2
0
mirror of https://github.com/raylib-cs/raylib-cs synced 2025-04-03 11:09:40 -04:00

Add PBR Shader Example. (#229)

This commit is contained in:
MrScautHD 2024-02-09 19:19:57 +01:00 committed by GitHub
parent 5d23b5ca71
commit 818b52cbeb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
14 changed files with 610 additions and 0 deletions

View File

@ -129,6 +129,7 @@ public class ExampleList
// Shaders
new ExampleInfo("BasicLighting", BasicLighting.Main),
new ExampleInfo("BasicPbr", BasicPbr.Main),
new ExampleInfo("CustomUniform", CustomUniform.Main),
new ExampleInfo("Eratosthenes", Eratosthenes.Main),
new ExampleInfo("Fog", Fog.Main),

View File

@ -0,0 +1,300 @@
/*******************************************************************************************
*
* raylib [shaders] example - Basic PBR
*
* Example originally created with raylib 5.0, last time updated with raylib 5.1-dev
*
* Example contributed by Afan OLOVCIC (@_DevDad) and reviewed by Ramon Santamaria (@raysan5)
*
* Example licensed under an unmodified zlib/libpng license, which is an OSI-certified,
* BSD-like license that allows static linking with closed source software
*
* Copyright (c) 2023-2024 Afan OLOVCIC (@_DevDad)
*
* Model: "Old Rusty Car" (https://skfb.ly/LxRy) by Renafox,
* licensed under Creative Commons Attribution-NonCommercial
* (http://creativecommons.org/licenses/by-nc/4.0/)
*
********************************************************************************************/
using System.Numerics;
using Examples.Shared;
using static Raylib_cs.Raylib;
namespace Examples.Shaders;
public class BasicPbr
{
private const int GLSL_VERSION = 330;
public static unsafe int Main()
{
// Initialization
//--------------------------------------------------------------------------------------
const int screenWidth = 800;
const int screenHeight = 450;
// Enable Multi Sampling Anti Aliasing 4x (if available)
SetConfigFlags(ConfigFlags.Msaa4xHint);
InitWindow(screenWidth, screenHeight, "raylib [shaders] example - basic pbr");
// Define the camera to look into our 3d world
Camera3D camera = new();
camera.Position = new Vector3(2.0f, 4.0f, 6.0f);
camera.Target = new Vector3(0.0f, 0.5f, 0.0f);
camera.Up = new Vector3(0.0f, 1.0f, 0.0f);
camera.FovY = 45.0f;
camera.Projection = CameraProjection.Perspective;
// Load PBR shader and setup all required locations
var shader = LoadShader("resources/shaders/glsl330/pbr.vs", "resources/shaders/glsl330/pbr.fs");
shader.Locs[(int)ShaderLocationIndex.MapAlbedo] = GetShaderLocation(shader, "albedoMap");
// WARNING: Metalness, roughness, and ambient occlusion are all packed into a MRA texture
// They are passed as to the SHADER_LOC_MAP_METALNESS location for convenience,
// shader already takes care of it accordingly
shader.Locs[(int)ShaderLocationIndex.MapMetalness] = GetShaderLocation(shader, "mraMap");
shader.Locs[(int)ShaderLocationIndex.MapNormal] = GetShaderLocation(shader, "normalMap");
// WARNING: Similar to the MRA map, the emissive map packs different information
// into a single texture: it stores height and emission data
// It is binded to SHADER_LOC_MAP_EMISSION location an properly processed on shader
shader.Locs[(int)ShaderLocationIndex.MapEmission] = GetShaderLocation(shader, "emissiveMap");
shader.Locs[(int)ShaderLocationIndex.ColorDiffuse] = GetShaderLocation(shader, "albedoColor");
// Setup additional required shader locations, including lights data
shader.Locs[(int)ShaderLocationIndex.VectorView] = GetShaderLocation(shader, "viewPos");
var lightCountLoc = GetShaderLocation(shader, "numOfLights");
var maxLightCount = 4;
SetShaderValue(shader, lightCountLoc, &maxLightCount, ShaderUniformDataType.Int);
// Setup ambient color and intensity parameters
var ambientIntensity = 0.02f;
var ambientColor = new Color(26, 32, 135, 255);
var ambientColorNormalized = new Vector3(ambientColor.R / 255.0F, ambientColor.G / 255.0F, ambientColor.B / 255.0F);
SetShaderValue(shader, GetShaderLocation(shader, "ambientColor"), &ambientColorNormalized, ShaderUniformDataType.Vec3);
SetShaderValue(shader, GetShaderLocation(shader, "ambient"), &ambientIntensity, ShaderUniformDataType.Float);
// Get location for shader parameters that can be modified in real time
var emissiveIntensityLoc = GetShaderLocation(shader, "emissivePower");
var emissiveColorLoc = GetShaderLocation(shader, "emissiveColor");
var textureTilingLoc = GetShaderLocation(shader, "tiling");
// Load old car model using PBR maps and shader
// WARNING: We know this model consists of a single model.meshes[0] and
// that model.materials[0] is by default assigned to that mesh
// There could be more complex models consisting of multiple meshes and
// multiple materials defined for those meshes... but always 1 mesh = 1 material
var car = LoadModel("resources/models/gltf/old_car_new.glb");
// Assign already setup PBR shader to model.materials[0], used by models.meshes[0]
car.Materials[0].Shader = shader;
// Setup materials[0].maps default parameters
car.Materials[0].Maps[(int)MaterialMapIndex.Albedo].Color = Color.White;
car.Materials[0].Maps[(int)MaterialMapIndex.Metalness].Value = 0.0f;
car.Materials[0].Maps[(int)MaterialMapIndex.Roughness].Value = 0.0f;
car.Materials[0].Maps[(int)MaterialMapIndex.Occlusion].Value = 1.0f;
car.Materials[0].Maps[(int)MaterialMapIndex.Emission].Color = new Color(255, 162, 0, 255);
// Setup materials[0].maps default textures
car.Materials[0].Maps[(int)MaterialMapIndex.Albedo].Texture = LoadTexture("resources/old_car_d.png");
car.Materials[0].Maps[(int)MaterialMapIndex.Metalness].Texture = LoadTexture("resources/old_car_mra.png");
car.Materials[0].Maps[(int)MaterialMapIndex.Normal].Texture = LoadTexture("resources/old_car_n.png");
car.Materials[0].Maps[(int)MaterialMapIndex.Emission].Texture = LoadTexture("resources/old_car_e.png");
// Load floor model mesh and assign material parameters
// NOTE: A basic plane shape can be generated instead of being loaded from a model file
var floor = LoadModel("resources/models/gltf/plane.glb");
//Mesh floorMesh = GenMeshPlane(10, 10, 10, 10);
//GenMeshTangents(&floorMesh); // TODO: Review tangents generation
//Model floor = LoadModelFromMesh(floorMesh);
// Assign material shader for our floor model, same PBR shader
floor.Materials[0].Shader = shader;
floor.Materials[0].Maps[(int)MaterialMapIndex.Albedo].Color = Color.White;
floor.Materials[0].Maps[(int)MaterialMapIndex.Metalness].Value = 0.0f;
floor.Materials[0].Maps[(int)MaterialMapIndex.Roughness].Value = 0.0f;
floor.Materials[0].Maps[(int)MaterialMapIndex.Occlusion].Value = 1.0f;
floor.Materials[0].Maps[(int)MaterialMapIndex.Emission].Color = Color.Black;
floor.Materials[0].Maps[(int)MaterialMapIndex.Albedo].Texture = LoadTexture("resources/road_a.png");
floor.Materials[0].Maps[(int)MaterialMapIndex.Metalness].Texture = LoadTexture("resources/road_mra.png");
floor.Materials[0].Maps[(int)MaterialMapIndex.Normal].Texture = LoadTexture("resources/road_n.png");
// Models texture tiling parameter can be stored in the Material struct if required (CURRENTLY NOT USED)
// NOTE: Material.params[4] are available for generic parameters storage (float)
var carTextureTiling = new Vector2(0.5f, 0.5f);
var floorTextureTiling = new Vector2(0.5f, 0.5f);
// Create some lights
var lights = new PbrLight[4];
lights[0] = PbrLights.CreateLight(
0,
PbrLightType.Point,
new Vector3(-1.0f, 1.0f, -2.0f),
new Vector3(0.0f, 0.0f, 0.0f),
Color.Yellow,
4.0f,
shader);
lights[1] = PbrLights.CreateLight(1,
PbrLightType.Point,
new Vector3(2.0f, 1.0f, 1.0f),
new Vector3(0.0f, 0.0f, 0.0f),
Color.Green,
3.3f,
shader);
lights[2] = PbrLights.CreateLight(
2, PbrLightType.Point,
new Vector3(-2.0f, 1.0f, 1.0f),
new Vector3(0.0f, 0.0f, 0.0f),
Color.Red,
8.3f,
shader);
lights[3] = PbrLights.CreateLight(
3,
PbrLightType.Point,
new Vector3(1.0f, 1.0f, -2.0f),
new Vector3(0.0f, 0.0f, 0.0f),
Color.Black,
2.0f,
shader);
// Setup material texture maps usage in shader
// NOTE: By default, the texture maps are always used
var usage = 1;
SetShaderValue(shader, GetShaderLocation(shader, "useTexAlbedo"), &usage, ShaderUniformDataType.Int);
SetShaderValue(shader, GetShaderLocation(shader, "useTexNormal"), &usage, ShaderUniformDataType.Int);
SetShaderValue(shader, GetShaderLocation(shader, "useTexMRA"), &usage, ShaderUniformDataType.Int);
SetShaderValue(shader, GetShaderLocation(shader, "useTexEmissive"), &usage, ShaderUniformDataType.Int);
SetTargetFPS(60); // Set our game to run at 60 frames-per-second
//---------------------------------------------------------------------------------------
// Main game loop
while (!WindowShouldClose()) // Detect window close button or ESC key
{
// Update
//----------------------------------------------------------------------------------
UpdateCamera(&camera, CameraMode.Orbital);
// Update the shader with the camera view vector (points towards { 0.0f, 0.0f, 0.0f })
var cameraPos = camera.Position;
SetShaderValue(shader, shader.Locs[(int)ShaderLocationIndex.VectorView], cameraPos, ShaderUniformDataType.Vec3);
// Check key inputs to enable/disable lights
if (IsKeyPressed(KeyboardKey.One))
{
lights[2].Enabled = !lights[2].Enabled;
}
if (IsKeyPressed(KeyboardKey.Two))
{
lights[1].Enabled = !lights[1].Enabled;
}
if (IsKeyPressed(KeyboardKey.Three))
{
lights[3].Enabled = !lights[3].Enabled;
}
if (IsKeyPressed(KeyboardKey.Four))
{
lights[0].Enabled = !lights[0].Enabled;
}
// Update light values on shader (actually, only enable/disable them)
for (var i = 0; i < 4; i++)
{
UpdateLight(shader, lights[i]);
}
//----------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
BeginDrawing();
ClearBackground(Color.Black);
BeginMode3D(camera);
// Set floor model texture tiling and emissive color parameters on shader
SetShaderValue(shader, textureTilingLoc, &floorTextureTiling, ShaderUniformDataType.Vec2);
var floorEmissiveColor = ColorNormalize(floor.Materials[0].Maps[(int)MaterialMapIndex.Emission].Color);
SetShaderValue(shader, emissiveColorLoc, &floorEmissiveColor, ShaderUniformDataType.Vec4);
DrawModel(floor, Vector3.Zero, 5.0f, Color.White); // Draw floor model
// Set old car model texture tiling, emissive color and emissive intensity parameters on shader
SetShaderValue(shader, textureTilingLoc, &carTextureTiling, ShaderUniformDataType.Vec2);
var carEmissiveColor = ColorNormalize(car.Materials[0].Maps[(int)MaterialMapIndex.Emission].Color);
SetShaderValue(shader, emissiveColorLoc, &carEmissiveColor, ShaderUniformDataType.Vec4);
var emissiveIntensity = 0.01f;
SetShaderValue(shader, emissiveIntensityLoc, &emissiveIntensity, ShaderUniformDataType.Float);
DrawModel(car, Vector3.Zero, 0.005f, Color.White); // Draw car model
// Draw spheres to show the lights positions
for (var i = 0; i < 4; i++)
{
var color = lights[i].Color;
var lightColor = new Color((byte)(color.X * 255), (byte)(color.Y * 255), (byte)(color.Z * 255),
(byte)(color.W * 255));
if (lights[i].Enabled)
{
DrawSphereEx(lights[i].Position, 0.2f, 8, 8, lightColor);
}
else
{
DrawSphereWires(lights[i].Position, 0.2f, 8, 8, ColorAlpha(lightColor, 0.3f));
}
}
EndMode3D();
DrawText("Toggle lights: [1][2][3][4]", 10, 40, 20, Color.LightGray);
DrawText("(c) Old Rusty Car model by Renafox (https://skfb.ly/LxRy)", screenWidth - 320, screenHeight - 20, 10, Color.LightGray);
DrawFPS(10, 10);
EndDrawing();
//----------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
// Unbind (disconnect) shader from car.material[0]
// to avoid UnloadMaterial() trying to unload it automatically
UnloadMaterial(car.Materials[0]);
car.Materials[0].Maps = null;
UnloadModel(car);
UnloadMaterial(floor.Materials[0]);
floor.Materials[0].Maps = null;
UnloadModel(floor);
UnloadShader(shader); // Unload Shader
CloseWindow(); // Close window and OpenGL context
//--------------------------------------------------------------------------------------
return 0;
}
private static void UpdateLight(Shader shader, PbrLight light)
{
SetShaderValue(shader, light.EnabledLoc, light.Enabled, ShaderUniformDataType.Int);
SetShaderValue(shader, light.TypeLoc, light.Type, ShaderUniformDataType.Int);
// Send to shader light position values
SetShaderValue(shader, light.PositionLoc, light.Position, ShaderUniformDataType.Vec3);
// Send to shader light target position values
SetShaderValue(shader, light.TargetLoc, light.Target, ShaderUniformDataType.Vec3);
SetShaderValue(shader, light.ColorLoc, light.Color, ShaderUniformDataType.Vec4);
SetShaderValue(shader, light.IntensityLoc, light.Intensity, ShaderUniformDataType.Float);
}
}

View File

@ -0,0 +1,99 @@
using static Raylib_cs.Raylib;
using System.Numerics;
namespace Examples.Shared;
public struct PbrLight
{
public PbrLightType Type;
public bool Enabled;
public Vector3 Position;
public Vector3 Target;
public Vector4 Color;
public float Intensity;
// Shader light parameters locations
public int TypeLoc;
public int EnabledLoc;
public int PositionLoc;
public int TargetLoc;
public int ColorLoc;
public int IntensityLoc;
}
public enum PbrLightType
{
Directorional,
Point,
Spot
}
public class PbrLights
{
public static PbrLight CreateLight(
int lightsCount,
PbrLightType type,
Vector3 pos,
Vector3 target,
Color color,
float intensity,
Shader shader
)
{
PbrLight light = new();
light.Enabled = true;
light.Type = type;
light.Position = pos;
light.Target = target;
light.Color = new Vector4(
color.R / 255.0f,
color.G / 255.0f,
color.B / 255.0f,
color.A / 255.0f
);
light.Intensity = intensity;
string enabledName = "lights[" + lightsCount + "].enabled";
string typeName = "lights[" + lightsCount + "].type";
string posName = "lights[" + lightsCount + "].position";
string targetName = "lights[" + lightsCount + "].target";
string colorName = "lights[" + lightsCount + "].color";
string intensityName = "lights[" + lightsCount + "].intensity";
light.EnabledLoc = GetShaderLocation(shader, enabledName);
light.TypeLoc = GetShaderLocation(shader, typeName);
light.PositionLoc = GetShaderLocation(shader, posName);
light.TargetLoc = GetShaderLocation(shader, targetName);
light.ColorLoc = GetShaderLocation(shader, colorName);
light.IntensityLoc = GetShaderLocation(shader, intensityName);
UpdateLightValues(shader, light);
return light;
}
public static void UpdateLightValues(Shader shader, PbrLight light)
{
// Send to shader light enabled state and type
Raylib.SetShaderValue(
shader,
light.EnabledLoc,
light.Enabled ? 1 : 0,
ShaderUniformDataType.Int
);
Raylib.SetShaderValue(shader, light.TypeLoc, (int)light.Type, ShaderUniformDataType.Int);
// Send to shader light target position values
Raylib.SetShaderValue(shader, light.PositionLoc, light.Position, ShaderUniformDataType.Vec3);
// Send to shader light target position values
Raylib.SetShaderValue(shader, light.TargetLoc, light.Target, ShaderUniformDataType.Vec3);
// Send to shader light color values
Raylib.SetShaderValue(shader, light.ColorLoc, light.Color, ShaderUniformDataType.Vec4);
// Send to shader light intensity values
Raylib.SetShaderValue(shader, light.IntensityLoc, light.Intensity, ShaderUniformDataType.Float);
}
}

Binary file not shown.

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 623 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 657 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 645 KiB

View File

@ -0,0 +1,162 @@
#version 330
#define MAX_LIGHTS 4
#define LIGHT_DIRECTIONAL 0
#define LIGHT_POINT 1
#define PI 3.14159265358979323846
struct Light {
int enabled;
int type;
vec3 position;
vec3 target;
vec4 color;
float intensity;
};
// Input vertex attributes (from vertex shader)
in vec3 fragPosition;
in vec2 fragTexCoord;
in vec4 fragColor;
in vec3 fragNormal;
in vec4 shadowPos;
in mat3 TBN;
// Output fragment color
out vec4 finalColor;
// Input uniform values
uniform int numOfLights;
uniform sampler2D albedoMap;
uniform sampler2D mraMap;
uniform sampler2D normalMap;
uniform sampler2D emissiveMap; // r: Hight g:emissive
uniform vec2 tiling;
uniform vec2 offset;
uniform int useTexAlbedo;
uniform int useTexNormal;
uniform int useTexMRA;
uniform int useTexEmissive;
uniform vec4 albedoColor;
uniform vec4 emissiveColor;
uniform float normalValue;
uniform float metallicValue;
uniform float roughnessValue;
uniform float aoValue;
uniform float emissivePower;
// Input lighting values
uniform Light lights[MAX_LIGHTS];
uniform vec3 viewPos;
uniform vec3 ambientColor;
uniform float ambient;
// Reflectivity in range 0.0 to 1.0
// NOTE: Reflectivity is increased when surface view at larger angle
vec3 SchlickFresnel(float hDotV,vec3 refl)
{
return refl + (1.0 - refl)*pow(1.0 - hDotV, 5.0);
}
float GgxDistribution(float nDotH,float roughness)
{
float a = roughness * roughness * roughness * roughness;
float d = nDotH * nDotH * (a - 1.0) + 1.0;
d = PI * d * d;
return a / max(d,0.0000001);
}
float GeomSmith(float nDotV,float nDotL,float roughness)
{
float r = roughness + 1.0;
float k = r*r / 8.0;
float ik = 1.0 - k;
float ggx1 = nDotV/(nDotV*ik + k);
float ggx2 = nDotL/(nDotL*ik + k);
return ggx1*ggx2;
}
vec3 ComputePBR()
{
vec3 albedo = texture(albedoMap,vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb;
albedo = vec3(albedoColor.x*albedo.x, albedoColor.y*albedo.y, albedoColor.z*albedo.z);
float metallic = clamp(metallicValue, 0.0, 1.0);
float roughness = clamp(roughnessValue, 0.0, 1.0);
float ao = clamp(aoValue, 0.0, 1.0);
if (useTexMRA == 1)
{
vec4 mra = texture(mraMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y))*useTexMRA;
metallic = clamp(mra.r + metallicValue, 0.04, 1.0);
roughness = clamp(mra.g + roughnessValue, 0.04, 1.0);
ao = (mra.b + aoValue)*0.5;
}
vec3 N = normalize(fragNormal);
if (useTexNormal == 1)
{
N = texture(normalMap, vec2(fragTexCoord.x*tiling.x + offset.y, fragTexCoord.y*tiling.y + offset.y)).rgb;
N = normalize(N*2.0 - 1.0);
N = normalize(N*TBN);
}
vec3 V = normalize(viewPos - fragPosition);
vec3 emissive = vec3(0);
emissive = (texture(emissiveMap, vec2(fragTexCoord.x*tiling.x+offset.x, fragTexCoord.y*tiling.y+offset.y)).rgb).g * emissiveColor.rgb*emissivePower * useTexEmissive;
// return N;//vec3(metallic,metallic,metallic);
// if dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity
vec3 baseRefl = mix(vec3(0.04), albedo.rgb, metallic);
vec3 lightAccum = vec3(0.0); // Acumulate lighting lum
for (int i = 0; i < numOfLights; i++)
{
vec3 L = normalize(lights[i].position - fragPosition); // Compute light vector
vec3 H = normalize(V + L); // Compute halfway bisecting vector
float dist = length(lights[i].position - fragPosition); // Compute distance to light
float attenuation = 1.0/(dist*dist*0.23); // Compute attenuation
vec3 radiance = lights[i].color.rgb*lights[i].intensity*attenuation; // Compute input radiance, light energy comming in
// Cook-Torrance BRDF distribution function
float nDotV = max(dot(N,V), 0.0000001);
float nDotL = max(dot(N,L), 0.0000001);
float hDotV = max(dot(H,V), 0.0);
float nDotH = max(dot(N,H), 0.0);
float D = GgxDistribution(nDotH, roughness); // Larger the more micro-facets aligned to H
float G = GeomSmith(nDotV, nDotL, roughness); // Smaller the more micro-facets shadow
vec3 F = SchlickFresnel(hDotV, baseRefl); // Fresnel proportion of specular reflectance
vec3 spec = (D*G*F)/(4.0*nDotV*nDotL);
// Difuse and spec light can't be above 1.0
// kD = 1.0 - kS diffuse component is equal 1.0 - spec comonent
vec3 kD = vec3(1.0) - F;
// Mult kD by the inverse of metallnes, only non-metals should have diffuse light
kD *= 1.0 - metallic;
lightAccum += ((kD*albedo.rgb/PI + spec)*radiance*nDotL)*lights[i].enabled; // Angle of light has impact on result
}
vec3 ambientFinal = (ambientColor + albedo)*ambient*0.5;
return ambientFinal + lightAccum*ao + emissive;
}
void main()
{
vec3 color = ComputePBR();
// HDR tonemapping
color = pow(color, color + vec3(1.0));
// Gamma correction
color = pow(color, vec3(1.0/2.2));
finalColor = vec4(color, 1.0);
}

View File

@ -0,0 +1,48 @@
#version 330
// Input vertex attributes
in vec3 vertexPosition;
in vec2 vertexTexCoord;
in vec3 vertexNormal;
in vec3 vertexTangent;
in vec4 vertexColor;
// Input uniform values
uniform mat4 mvp;
uniform mat4 matModel;
uniform mat4 matNormal;
uniform vec3 lightPos;
uniform vec4 difColor;
// Output vertex attributes (to fragment shader)
out vec3 fragPosition;
out vec2 fragTexCoord;
out vec4 fragColor;
out vec3 fragNormal;
out mat3 TBN;
const float normalOffset = 0.1;
void main()
{
// Compute binormal from vertex normal and tangent
vec3 vertexBinormal = cross(vertexNormal, vertexTangent);
// Compute fragment normal based on normal transformations
mat3 normalMatrix = transpose(inverse(mat3(matModel)));
// Compute fragment position based on model transformations
fragPosition = vec3(matModel*vec4(vertexPosition, 1.0f));
fragTexCoord = vertexTexCoord*2.0;
fragNormal = normalize(normalMatrix*vertexNormal);
vec3 fragTangent = normalize(normalMatrix*vertexTangent);
fragTangent = normalize(fragTangent - dot(fragTangent, fragNormal)*fragNormal);
vec3 fragBinormal = normalize(normalMatrix*vertexBinormal);
fragBinormal = cross(fragNormal, fragTangent);
TBN = transpose(mat3(fragTangent, fragBinormal, fragNormal));
// Calculate final vertex position
gl_Position = mvp*vec4(vertexPosition, 1.0);
}