mirror of
https://github.com/raylib-cs/raylib-cs
synced 2025-04-03 11:09:40 -04:00
162 lines
5.1 KiB
GLSL
162 lines
5.1 KiB
GLSL
#version 330
|
|
|
|
#define MAX_LIGHTS 4
|
|
#define LIGHT_DIRECTIONAL 0
|
|
#define LIGHT_POINT 1
|
|
#define PI 3.14159265358979323846
|
|
|
|
struct Light {
|
|
int enabled;
|
|
int type;
|
|
vec3 position;
|
|
vec3 target;
|
|
vec4 color;
|
|
float intensity;
|
|
};
|
|
|
|
// Input vertex attributes (from vertex shader)
|
|
in vec3 fragPosition;
|
|
in vec2 fragTexCoord;
|
|
in vec4 fragColor;
|
|
in vec3 fragNormal;
|
|
in vec4 shadowPos;
|
|
in mat3 TBN;
|
|
|
|
// Output fragment color
|
|
out vec4 finalColor;
|
|
|
|
// Input uniform values
|
|
uniform int numOfLights;
|
|
uniform sampler2D albedoMap;
|
|
uniform sampler2D mraMap;
|
|
uniform sampler2D normalMap;
|
|
uniform sampler2D emissiveMap; // r: Hight g:emissive
|
|
|
|
uniform vec2 tiling;
|
|
uniform vec2 offset;
|
|
|
|
uniform int useTexAlbedo;
|
|
uniform int useTexNormal;
|
|
uniform int useTexMRA;
|
|
uniform int useTexEmissive;
|
|
|
|
uniform vec4 albedoColor;
|
|
uniform vec4 emissiveColor;
|
|
uniform float normalValue;
|
|
uniform float metallicValue;
|
|
uniform float roughnessValue;
|
|
uniform float aoValue;
|
|
uniform float emissivePower;
|
|
|
|
// Input lighting values
|
|
uniform Light lights[MAX_LIGHTS];
|
|
uniform vec3 viewPos;
|
|
|
|
uniform vec3 ambientColor;
|
|
uniform float ambient;
|
|
|
|
// Reflectivity in range 0.0 to 1.0
|
|
// NOTE: Reflectivity is increased when surface view at larger angle
|
|
vec3 SchlickFresnel(float hDotV,vec3 refl)
|
|
{
|
|
return refl + (1.0 - refl)*pow(1.0 - hDotV, 5.0);
|
|
}
|
|
|
|
float GgxDistribution(float nDotH,float roughness)
|
|
{
|
|
float a = roughness * roughness * roughness * roughness;
|
|
float d = nDotH * nDotH * (a - 1.0) + 1.0;
|
|
d = PI * d * d;
|
|
return a / max(d,0.0000001);
|
|
}
|
|
|
|
float GeomSmith(float nDotV,float nDotL,float roughness)
|
|
{
|
|
float r = roughness + 1.0;
|
|
float k = r*r / 8.0;
|
|
float ik = 1.0 - k;
|
|
float ggx1 = nDotV/(nDotV*ik + k);
|
|
float ggx2 = nDotL/(nDotL*ik + k);
|
|
return ggx1*ggx2;
|
|
}
|
|
|
|
vec3 ComputePBR()
|
|
{
|
|
vec3 albedo = texture(albedoMap,vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb;
|
|
albedo = vec3(albedoColor.x*albedo.x, albedoColor.y*albedo.y, albedoColor.z*albedo.z);
|
|
|
|
float metallic = clamp(metallicValue, 0.0, 1.0);
|
|
float roughness = clamp(roughnessValue, 0.0, 1.0);
|
|
float ao = clamp(aoValue, 0.0, 1.0);
|
|
|
|
if (useTexMRA == 1)
|
|
{
|
|
vec4 mra = texture(mraMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y))*useTexMRA;
|
|
metallic = clamp(mra.r + metallicValue, 0.04, 1.0);
|
|
roughness = clamp(mra.g + roughnessValue, 0.04, 1.0);
|
|
ao = (mra.b + aoValue)*0.5;
|
|
}
|
|
|
|
vec3 N = normalize(fragNormal);
|
|
if (useTexNormal == 1)
|
|
{
|
|
N = texture(normalMap, vec2(fragTexCoord.x*tiling.x + offset.y, fragTexCoord.y*tiling.y + offset.y)).rgb;
|
|
N = normalize(N*2.0 - 1.0);
|
|
N = normalize(N*TBN);
|
|
}
|
|
|
|
vec3 V = normalize(viewPos - fragPosition);
|
|
|
|
vec3 emissive = vec3(0);
|
|
emissive = (texture(emissiveMap, vec2(fragTexCoord.x*tiling.x+offset.x, fragTexCoord.y*tiling.y+offset.y)).rgb).g * emissiveColor.rgb*emissivePower * useTexEmissive;
|
|
|
|
// return N;//vec3(metallic,metallic,metallic);
|
|
// if dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity
|
|
vec3 baseRefl = mix(vec3(0.04), albedo.rgb, metallic);
|
|
vec3 lightAccum = vec3(0.0); // Acumulate lighting lum
|
|
|
|
for (int i = 0; i < numOfLights; i++)
|
|
{
|
|
vec3 L = normalize(lights[i].position - fragPosition); // Compute light vector
|
|
vec3 H = normalize(V + L); // Compute halfway bisecting vector
|
|
float dist = length(lights[i].position - fragPosition); // Compute distance to light
|
|
float attenuation = 1.0/(dist*dist*0.23); // Compute attenuation
|
|
vec3 radiance = lights[i].color.rgb*lights[i].intensity*attenuation; // Compute input radiance, light energy comming in
|
|
|
|
// Cook-Torrance BRDF distribution function
|
|
float nDotV = max(dot(N,V), 0.0000001);
|
|
float nDotL = max(dot(N,L), 0.0000001);
|
|
float hDotV = max(dot(H,V), 0.0);
|
|
float nDotH = max(dot(N,H), 0.0);
|
|
float D = GgxDistribution(nDotH, roughness); // Larger the more micro-facets aligned to H
|
|
float G = GeomSmith(nDotV, nDotL, roughness); // Smaller the more micro-facets shadow
|
|
vec3 F = SchlickFresnel(hDotV, baseRefl); // Fresnel proportion of specular reflectance
|
|
|
|
vec3 spec = (D*G*F)/(4.0*nDotV*nDotL);
|
|
|
|
// Difuse and spec light can't be above 1.0
|
|
// kD = 1.0 - kS diffuse component is equal 1.0 - spec comonent
|
|
vec3 kD = vec3(1.0) - F;
|
|
|
|
// Mult kD by the inverse of metallnes, only non-metals should have diffuse light
|
|
kD *= 1.0 - metallic;
|
|
lightAccum += ((kD*albedo.rgb/PI + spec)*radiance*nDotL)*lights[i].enabled; // Angle of light has impact on result
|
|
}
|
|
|
|
vec3 ambientFinal = (ambientColor + albedo)*ambient*0.5;
|
|
|
|
return ambientFinal + lightAccum*ao + emissive;
|
|
}
|
|
|
|
void main()
|
|
{
|
|
vec3 color = ComputePBR();
|
|
|
|
// HDR tonemapping
|
|
color = pow(color, color + vec3(1.0));
|
|
|
|
// Gamma correction
|
|
color = pow(color, vec3(1.0/2.2));
|
|
|
|
finalColor = vec4(color, 1.0);
|
|
} |