2
0
mirror of https://github.com/raylib-cs/raylib-cs synced 2025-04-03 11:09:40 -04:00
2024-02-09 18:19:57 +00:00

162 lines
5.1 KiB
GLSL

#version 330
#define MAX_LIGHTS 4
#define LIGHT_DIRECTIONAL 0
#define LIGHT_POINT 1
#define PI 3.14159265358979323846
struct Light {
int enabled;
int type;
vec3 position;
vec3 target;
vec4 color;
float intensity;
};
// Input vertex attributes (from vertex shader)
in vec3 fragPosition;
in vec2 fragTexCoord;
in vec4 fragColor;
in vec3 fragNormal;
in vec4 shadowPos;
in mat3 TBN;
// Output fragment color
out vec4 finalColor;
// Input uniform values
uniform int numOfLights;
uniform sampler2D albedoMap;
uniform sampler2D mraMap;
uniform sampler2D normalMap;
uniform sampler2D emissiveMap; // r: Hight g:emissive
uniform vec2 tiling;
uniform vec2 offset;
uniform int useTexAlbedo;
uniform int useTexNormal;
uniform int useTexMRA;
uniform int useTexEmissive;
uniform vec4 albedoColor;
uniform vec4 emissiveColor;
uniform float normalValue;
uniform float metallicValue;
uniform float roughnessValue;
uniform float aoValue;
uniform float emissivePower;
// Input lighting values
uniform Light lights[MAX_LIGHTS];
uniform vec3 viewPos;
uniform vec3 ambientColor;
uniform float ambient;
// Reflectivity in range 0.0 to 1.0
// NOTE: Reflectivity is increased when surface view at larger angle
vec3 SchlickFresnel(float hDotV,vec3 refl)
{
return refl + (1.0 - refl)*pow(1.0 - hDotV, 5.0);
}
float GgxDistribution(float nDotH,float roughness)
{
float a = roughness * roughness * roughness * roughness;
float d = nDotH * nDotH * (a - 1.0) + 1.0;
d = PI * d * d;
return a / max(d,0.0000001);
}
float GeomSmith(float nDotV,float nDotL,float roughness)
{
float r = roughness + 1.0;
float k = r*r / 8.0;
float ik = 1.0 - k;
float ggx1 = nDotV/(nDotV*ik + k);
float ggx2 = nDotL/(nDotL*ik + k);
return ggx1*ggx2;
}
vec3 ComputePBR()
{
vec3 albedo = texture(albedoMap,vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb;
albedo = vec3(albedoColor.x*albedo.x, albedoColor.y*albedo.y, albedoColor.z*albedo.z);
float metallic = clamp(metallicValue, 0.0, 1.0);
float roughness = clamp(roughnessValue, 0.0, 1.0);
float ao = clamp(aoValue, 0.0, 1.0);
if (useTexMRA == 1)
{
vec4 mra = texture(mraMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y))*useTexMRA;
metallic = clamp(mra.r + metallicValue, 0.04, 1.0);
roughness = clamp(mra.g + roughnessValue, 0.04, 1.0);
ao = (mra.b + aoValue)*0.5;
}
vec3 N = normalize(fragNormal);
if (useTexNormal == 1)
{
N = texture(normalMap, vec2(fragTexCoord.x*tiling.x + offset.y, fragTexCoord.y*tiling.y + offset.y)).rgb;
N = normalize(N*2.0 - 1.0);
N = normalize(N*TBN);
}
vec3 V = normalize(viewPos - fragPosition);
vec3 emissive = vec3(0);
emissive = (texture(emissiveMap, vec2(fragTexCoord.x*tiling.x+offset.x, fragTexCoord.y*tiling.y+offset.y)).rgb).g * emissiveColor.rgb*emissivePower * useTexEmissive;
// return N;//vec3(metallic,metallic,metallic);
// if dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity
vec3 baseRefl = mix(vec3(0.04), albedo.rgb, metallic);
vec3 lightAccum = vec3(0.0); // Acumulate lighting lum
for (int i = 0; i < numOfLights; i++)
{
vec3 L = normalize(lights[i].position - fragPosition); // Compute light vector
vec3 H = normalize(V + L); // Compute halfway bisecting vector
float dist = length(lights[i].position - fragPosition); // Compute distance to light
float attenuation = 1.0/(dist*dist*0.23); // Compute attenuation
vec3 radiance = lights[i].color.rgb*lights[i].intensity*attenuation; // Compute input radiance, light energy comming in
// Cook-Torrance BRDF distribution function
float nDotV = max(dot(N,V), 0.0000001);
float nDotL = max(dot(N,L), 0.0000001);
float hDotV = max(dot(H,V), 0.0);
float nDotH = max(dot(N,H), 0.0);
float D = GgxDistribution(nDotH, roughness); // Larger the more micro-facets aligned to H
float G = GeomSmith(nDotV, nDotL, roughness); // Smaller the more micro-facets shadow
vec3 F = SchlickFresnel(hDotV, baseRefl); // Fresnel proportion of specular reflectance
vec3 spec = (D*G*F)/(4.0*nDotV*nDotL);
// Difuse and spec light can't be above 1.0
// kD = 1.0 - kS diffuse component is equal 1.0 - spec comonent
vec3 kD = vec3(1.0) - F;
// Mult kD by the inverse of metallnes, only non-metals should have diffuse light
kD *= 1.0 - metallic;
lightAccum += ((kD*albedo.rgb/PI + spec)*radiance*nDotL)*lights[i].enabled; // Angle of light has impact on result
}
vec3 ambientFinal = (ambientColor + albedo)*ambient*0.5;
return ambientFinal + lightAccum*ao + emissive;
}
void main()
{
vec3 color = ComputePBR();
// HDR tonemapping
color = pow(color, color + vec3(1.0));
// Gamma correction
color = pow(color, vec3(1.0/2.2));
finalColor = vec4(color, 1.0);
}