#version 330 #define MAX_LIGHTS 4 #define LIGHT_DIRECTIONAL 0 #define LIGHT_POINT 1 #define PI 3.14159265358979323846 struct Light { int enabled; int type; vec3 position; vec3 target; vec4 color; float intensity; }; // Input vertex attributes (from vertex shader) in vec3 fragPosition; in vec2 fragTexCoord; in vec4 fragColor; in vec3 fragNormal; in vec4 shadowPos; in mat3 TBN; // Output fragment color out vec4 finalColor; // Input uniform values uniform int numOfLights; uniform sampler2D albedoMap; uniform sampler2D mraMap; uniform sampler2D normalMap; uniform sampler2D emissiveMap; // r: Hight g:emissive uniform vec2 tiling; uniform vec2 offset; uniform int useTexAlbedo; uniform int useTexNormal; uniform int useTexMRA; uniform int useTexEmissive; uniform vec4 albedoColor; uniform vec4 emissiveColor; uniform float normalValue; uniform float metallicValue; uniform float roughnessValue; uniform float aoValue; uniform float emissivePower; // Input lighting values uniform Light lights[MAX_LIGHTS]; uniform vec3 viewPos; uniform vec3 ambientColor; uniform float ambient; // Reflectivity in range 0.0 to 1.0 // NOTE: Reflectivity is increased when surface view at larger angle vec3 SchlickFresnel(float hDotV,vec3 refl) { return refl + (1.0 - refl)*pow(1.0 - hDotV, 5.0); } float GgxDistribution(float nDotH,float roughness) { float a = roughness * roughness * roughness * roughness; float d = nDotH * nDotH * (a - 1.0) + 1.0; d = PI * d * d; return a / max(d,0.0000001); } float GeomSmith(float nDotV,float nDotL,float roughness) { float r = roughness + 1.0; float k = r*r / 8.0; float ik = 1.0 - k; float ggx1 = nDotV/(nDotV*ik + k); float ggx2 = nDotL/(nDotL*ik + k); return ggx1*ggx2; } vec3 ComputePBR() { vec3 albedo = texture(albedoMap,vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb; albedo = vec3(albedoColor.x*albedo.x, albedoColor.y*albedo.y, albedoColor.z*albedo.z); float metallic = clamp(metallicValue, 0.0, 1.0); float roughness = clamp(roughnessValue, 0.0, 1.0); float ao = clamp(aoValue, 0.0, 1.0); if (useTexMRA == 1) { vec4 mra = texture(mraMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y))*useTexMRA; metallic = clamp(mra.r + metallicValue, 0.04, 1.0); roughness = clamp(mra.g + roughnessValue, 0.04, 1.0); ao = (mra.b + aoValue)*0.5; } vec3 N = normalize(fragNormal); if (useTexNormal == 1) { N = texture(normalMap, vec2(fragTexCoord.x*tiling.x + offset.y, fragTexCoord.y*tiling.y + offset.y)).rgb; N = normalize(N*2.0 - 1.0); N = normalize(N*TBN); } vec3 V = normalize(viewPos - fragPosition); vec3 emissive = vec3(0); emissive = (texture(emissiveMap, vec2(fragTexCoord.x*tiling.x+offset.x, fragTexCoord.y*tiling.y+offset.y)).rgb).g * emissiveColor.rgb*emissivePower * useTexEmissive; // return N;//vec3(metallic,metallic,metallic); // if dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity vec3 baseRefl = mix(vec3(0.04), albedo.rgb, metallic); vec3 lightAccum = vec3(0.0); // Acumulate lighting lum for (int i = 0; i < numOfLights; i++) { vec3 L = normalize(lights[i].position - fragPosition); // Compute light vector vec3 H = normalize(V + L); // Compute halfway bisecting vector float dist = length(lights[i].position - fragPosition); // Compute distance to light float attenuation = 1.0/(dist*dist*0.23); // Compute attenuation vec3 radiance = lights[i].color.rgb*lights[i].intensity*attenuation; // Compute input radiance, light energy comming in // Cook-Torrance BRDF distribution function float nDotV = max(dot(N,V), 0.0000001); float nDotL = max(dot(N,L), 0.0000001); float hDotV = max(dot(H,V), 0.0); float nDotH = max(dot(N,H), 0.0); float D = GgxDistribution(nDotH, roughness); // Larger the more micro-facets aligned to H float G = GeomSmith(nDotV, nDotL, roughness); // Smaller the more micro-facets shadow vec3 F = SchlickFresnel(hDotV, baseRefl); // Fresnel proportion of specular reflectance vec3 spec = (D*G*F)/(4.0*nDotV*nDotL); // Difuse and spec light can't be above 1.0 // kD = 1.0 - kS diffuse component is equal 1.0 - spec comonent vec3 kD = vec3(1.0) - F; // Mult kD by the inverse of metallnes, only non-metals should have diffuse light kD *= 1.0 - metallic; lightAccum += ((kD*albedo.rgb/PI + spec)*radiance*nDotL)*lights[i].enabled; // Angle of light has impact on result } vec3 ambientFinal = (ambientColor + albedo)*ambient*0.5; return ambientFinal + lightAccum*ao + emissive; } void main() { vec3 color = ComputePBR(); // HDR tonemapping color = pow(color, color + vec3(1.0)); // Gamma correction color = pow(color, vec3(1.0/2.2)); finalColor = vec4(color, 1.0); }