2
0
mirror of https://github.com/raylib-cs/raylib-cs synced 2025-04-05 11:19:39 -04:00
raylib-cs/Bindings/Extensions.cs
ChrisDill 8623bf874e Changed easings to a direct port
- Trying direct ports of modules starting with easings.
- Readme fix and removed old rlgl.
- Improving documentation.
2019-03-17 11:05:24 +00:00

345 lines
11 KiB
C#

/* Raylib-cs
* Extensions.cs - Extra features
* Copyright 2019 Chris Dill
*
* Release under zLib License.
* See LICENSE for details.
*/
using System;
using System.Runtime.InteropServices;
namespace Raylib
{
public struct Tween
{
public delegate float Callback(float t, float b, float c, float d);
public Callback easer;
public float start;
public float end;
public float currentTime;
public float duration;
public bool completed;
public Tween(Callback easer, float start, float end, float duration)
{
this.easer = easer;
this.start = start;
this.end = end;
this.currentTime = 0f;
this.duration = duration;
this.completed = false;
}
public void Reset()
{
currentTime = 0f;
completed = false;
}
public float Apply(float dt)
{
currentTime += dt;
if (currentTime > duration)
{
currentTime = duration;
completed = true;
}
return easer(currentTime, start, end - start, duration);
}
}
public partial struct Color
{
public Color(byte r, byte g, byte b, byte a)
{
this.r = r;
this.g = g;
this.b = b;
this.a = a;
}
public Color(int r, int g, int b, int a)
{
this.r = Convert.ToByte(r);
this.g = Convert.ToByte(g);
this.b = Convert.ToByte(b);
this.a = Convert.ToByte(a);
}
internal string DebugDisplayString
{
get
{
return string.Concat(
r.ToString(), " ",
g.ToString(), " ",
b.ToString(), " ",
a.ToString()
);
}
}
/// <summary>
/// Performs linear interpolation of <see cref="Color"/>.
/// </summary>
/// <param name="value1">Source <see cref="Color"/>.</param>
/// <param name="value2">Destination <see cref="Color"/>.</param>
/// <param name="amount">Interpolation factor.</param>
/// <returns>Interpolated <see cref="Color"/>.</returns>
public static Color Lerp(Color value1, Color value2, float amount)
{
amount = Raylib.Clamp(amount, 0.0f, 1.0f);
return new Color(
(int) Raylib.Lerp(value1.r, value2.r, amount),
(int) Raylib.Lerp(value1.g, value2.g, amount),
(int) Raylib.Lerp(value1.b, value2.b, amount),
(int) Raylib.Lerp(value1.a, value2.a, amount)
);
}
}
// Utlity for accessing math functions through struct
public partial struct Vector2
{
public float X {get{return x;} set {x = value;}}
public float Y {get{return y;} set {y = value;}}
public Vector2(float x, float y)
{
this.x = x;
this.y = y;
}
public Vector2(float value)
{
this.x = value;
this.y = value;
}
public override bool Equals(object obj) => (obj is Vector2) && Equals((Vector2)obj);
public override int GetHashCode() => x.GetHashCode() + y.GetHashCode();
public float Length() => Raylib.Vector2Length(this);
public float LengthSquared() => (x * x) + (y * y);
public override string ToString()
{
return "Vector2(" + x + " " + y + ")";
}
// common values
public static Vector2 Zero { get { return Raylib.Vector2Zero(); } }
public static Vector2 One { get { return Raylib.Vector2One(); } }
public static Vector2 UnitX { get { return new Vector2(1, 0); } }
public static Vector2 UnitY { get { return new Vector2(0, 1); } }
// convienient operators
public static bool operator ==(Vector2 v1, Vector2 v2) => (v1.x == v2.x && v1.y == v2.y);
public static bool operator !=(Vector2 v1, Vector2 v2) => !(v1 == v2);
public static bool operator >(Vector2 v1, Vector2 v2) => v1.x > v2.x && v1.y > v2.y;
public static bool operator <(Vector2 v1, Vector2 v2) => v1.x < v2.x && v1.y < v2.y;
public static Vector2 operator +(Vector2 v1, Vector2 v2) => Raylib.Vector2Add(v1, v2);
public static Vector2 operator -(Vector2 v1, Vector2 v2) => Raylib.Vector2Subtract(v1, v2);
public static Vector2 operator *(Vector2 v1, Vector2 v2) => Raylib.Vector2Multiplyv(v1, v2);
public static Vector2 operator *(Vector2 v, float scale) => Raylib.Vector2Scale(v, scale);
public static Vector2 operator *(float scale, Vector2 v) => Raylib.Vector2Scale(v, scale);
public static Vector2 operator /(Vector2 v1, Vector2 v2) => Raylib.Vector2DivideV(v1, v2);
public static Vector2 operator /(Vector2 v1, float div) => Raylib.Vector2Divide(v1, div);
public static Vector2 operator -(Vector2 v1) => Raylib.Vector2Negate(v1);
public static Vector2 Lerp(Vector2 value1, Vector2 value2, float amount)
{
return new Vector2(
Raylib.Lerp(value1.X, value2.X, amount),
Raylib.Lerp(value1.Y, value2.Y, amount)
);
}
public static float Length(Vector2 v)
{
return Raylib.Vector2Length(v);
}
public static float Dot(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2DotProduct(v1, v2);
}
public static void Dot(ref Vector2 v1, ref Vector2 v2, out float result)
{
result = Raylib.Vector2DotProduct(v1, v2);
}
public static float DotProduct(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2DotProduct(v1, v2);
}
public static float Distance(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2Distance(v1, v2);
}
public static float DistanceSquared(Vector2 v1, Vector2 v2)
{
float a = v1.X - v2.X, b = v1.Y - v2.Y;
return (a * a) + (b * b);
}
public static float Angle(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2Angle(v1, v2);
}
public static Vector2 Scale(Vector2 v, float scale)
{
return Raylib.Vector2Scale(v, scale);
}
public static Vector2 Negate(Vector2 v)
{
return Raylib.Vector2Negate(v);
}
public static Vector2 Divide(Vector2 v, float div)
{
return Raylib.Vector2Divide(v, div);
}
public static void Normalize(ref Vector2 v)
{
v = Raylib.Vector2Normalize(v);
}
public static Vector2 Normalize(Vector2 v)
{
return Raylib.Vector2Normalize(v);
}
// Creates a new <see cref="Vector2"/> that contains a maximal values from the two vectors.
public static Vector2 Max(Vector2 v1, Vector2 v2)
{
return new Vector2(
v1.X > v2.X ? v1.X : v2.X,
v1.Y > v2.Y ? v1.Y : v2.Y
);
}
// Creates a new <see cref="Vector2"/> that contains a minimal values from the two vectors.
public static Vector2 Min(Vector2 v1, Vector2 v2)
{
return new Vector2(
v1.X < v2.X ? v1.X : v2.X,
v1.Y < v2.Y ? v1.Y : v2.Y
);
}
// Clamps the specified value within a range.
public static Vector2 Clamp(Vector2 value1, Vector2 min, Vector2 max)
{
return new Vector2(
Raylib.Clamp(value1.X, min.X, max.X),
Raylib.Clamp(value1.Y, min.Y, max.Y)
);
}
}
// Vector3 type
public partial struct Vector3
{
// captial option for xna/fna/monogame compatability
public float X { get => x; set => x = value; }
public float Y { get => y; set => y = value; }
public float Z { get => z; set => z = value; }
public Vector3(float x, float y, float z)
{
this.x = x;
this.y = y;
this.z = z;
}
public Vector3(float value)
{
this.x = value;
this.y = value;
this.z = value;
}
// extensions
public override bool Equals(object obj) => (obj is Vector3) && Equals((Vector3)obj);
public override int GetHashCode() => x.GetHashCode() + y.GetHashCode() + z.GetHashCode();
public override string ToString()
{
return "Vector3(" + x + " " + y + " " + z + ")";
}
// common values
public static Vector3 Zero { get { return Raylib.Vector3Zero(); } }
public static Vector3 One { get { return Raylib.Vector3One(); } }
public static Vector3 UnitX { get { return new Vector3(1, 0, 0); } }
public static Vector3 UnitY { get { return new Vector3(0, 1, 0); } }
public static Vector3 UnitZ { get { return new Vector3(0, 0, 1); } }
// convienient operators
public static bool operator ==(Vector3 v1, Vector3 v2) => (v1.x == v2.x && v1.y == v2.y && v1.z == v2.z);
public static bool operator !=(Vector3 v1, Vector3 v2) => !(v1 == v2);
public static bool operator >(Vector3 v1, Vector3 v2) => v1.x > v2.x && v1.y > v2.y && v1.z > v2.z;
public static bool operator <(Vector3 v1, Vector3 v2) => v1.x < v2.x && v1.y < v2.y && v1.z < v2.z;
public static Vector3 operator +(Vector3 v1, Vector3 v2) => Raylib.Vector3Add(v1, v2);
public static Vector3 operator -(Vector3 v1, Vector3 v2) => Raylib.Vector3Subtract(v1, v2);
public static Vector3 operator *(Vector3 v1, Vector3 v2) => Raylib.Vector3MultiplyV(v1, v2);
public static Vector3 operator *(Vector3 v, float scale) => Raylib.Vector3Scale(v, scale);
public static Vector3 operator *(float scale, Vector3 v) => Raylib.Vector3Scale(v, scale);
public static Vector3 operator /(Vector3 v1, Vector3 v2) => Raylib.Vector3DivideV(v1, v2);
public static Vector3 operator /(Vector3 v1, float div) => Raylib.Vector3Divide(v1, div);
public static Vector3 operator -(Vector3 v1) => Raylib.Vector3Negate(v1);
public static Vector3 Lerp(Vector3 value1, Vector3 value2, float amount)
{
return new Vector3(
Raylib.Lerp(value1.X, value2.X, amount),
Raylib.Lerp(value1.Y, value2.Y, amount),
Raylib.Lerp(value1.Z, value2.Z, amount)
);
}
}
// Vector4 type
public partial struct Vector4
{
public Vector4(float x, float y, float z, float w)
{
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
public Vector4(float value)
{
this.x = value;
this.y = value;
this.z = value;
this.w = value;
}
public override bool Equals(object obj) => (obj is Vector4) && Equals((Vector4)obj);
public override int GetHashCode() => x.GetHashCode() + y.GetHashCode() + z.GetHashCode() + w.GetHashCode();
public override string ToString()
{
return "Vector4(" + x + " " + y + " " + z + " " + w + ")";
}
// convienient operators
public static bool operator ==(Vector4 v1, Vector4 v2) => (v1.x == v2.x && v1.y == v2.y && v1.z == v2.z && v1.w == v2.w);
public static bool operator !=(Vector4 v1, Vector4 v2) => !(v1 == v2);
public static bool operator >(Vector4 v1, Vector4 v2) => v1.x > v2.x && v1.y > v2.y && v1.z > v2.z && v2.w > v2.w;
public static bool operator <(Vector4 v1, Vector4 v2) => v1.x < v2.x && v1.y < v2.y && v1.z < v2.z && v1.w < v2.w;
}
}