2
0
mirror of https://github.com/raylib-cs/raylib-cs synced 2025-04-03 11:09:40 -04:00

Removed Extensions.cs and moving some of the functions back into modules.

- I originally made extensions to separate things to help with code generation. Although since they are fairly simple I have now changed my mind and moved them back into their modules.

- Removed partial from raylib structs. This allowed extending them but I think it makes it harder to understand raylib types from looking at it.

- Minor constructors additions and changes.
This commit is contained in:
ChrisDill 2019-10-27 14:13:53 +00:00
parent 0911c3ab88
commit 835f4ba6e9
3 changed files with 455 additions and 577 deletions

View File

@ -1,547 +0,0 @@
/* Extensions.cs
*
* Copyright 2019 Chris Dill
*
* Release under zLib License.
* See LICENSE for details.
*/
using System;
using System.Text;
using System.Runtime.InteropServices;
namespace Raylib
{
// Extra functions over exsiting bindings
// Feel free to modifiy this to fit your project.
public partial class Raylib
{
public static PhysicsBodyData CreatePhysicsBodyCircleEx(Vector2 pos, float radius, float density)
{
var body = CreatePhysicsBodyCircle(pos, radius, density);
var data = (PhysicsBodyData)Marshal.PtrToStructure(body, typeof(PhysicsBodyData));
return data;
}
public static PhysicsBodyData CreatePhysicsBodyRectangleEx(Vector2 pos, float width, float height, float density)
{
var body = CreatePhysicsBodyRectangle(pos, width, height, density);
var data = (PhysicsBodyData)Marshal.PtrToStructure(body, typeof(PhysicsBodyData));
return data;
}
public static PhysicsBodyData GetPhysicsBodyEx(int index)
{
var body = GetPhysicsBodyImport(index);
var data = (PhysicsBodyData)Marshal.PtrToStructure(body, typeof(PhysicsBodyData));
return data;
}
public static PhysicsBodyData CreatePhysicsBodyPolygonEx(Vector2 pos, float radius, int sides, float density)
{
var body = CreatePhysicsBodyPolygon(pos, radius, sides, density);
var data = (PhysicsBodyData)Marshal.PtrToStructure(body, typeof(PhysicsBodyData));
return data;
}
public static void DrawRenderTexture(RenderTexture2D target)
{
int screenWidth = GetScreenWidth();
int screenHeight = GetScreenHeight();
// NOTE: Render texture must be y-flipped due to default OpenGL coordinates (left-bottom)
DrawTexturePro(target.texture, new Rectangle(0, 0, target.texture.width, -target.texture.height), new Rectangle(0, 0, screenWidth, screenHeight), new Vector2(0, 0), 0, Color.WHITE);
}
// extension providing SubText
public static string SubText(this string input, int position, int length)
{
return input.Substring(position, Math.Min(length, input.Length));
}
// Here (in the public method) we hide some low level details
// memory allocation, string manipulations etc.
public static bool CoreGuiTextBox(Rectangle bounds, ref string text, int textSize, bool freeEdit)
{
if (null == text)
{
return false; // or throw exception; or assign "" to text
}
StringBuilder sb = new StringBuilder(text);
// If we allow editing we should allocate enough size (Length) within StringBuilder
if (textSize > sb.Length)
{
sb.Length = textSize;
}
bool result = GuiTextBox(bounds, sb, sb.Length, freeEdit);
// Back to string (StringBuilder can have been edited)
// You may want to add some logic here; e.g. trim trailing '\0'
text = sb.ToString();
return result;
}
// Text Box control with multiple lines
public static bool CoreTextBoxMulti(Rectangle bounds, ref string text, int textSize, bool freeEdit)
{
if (null == text)
{
return false; // or throw exception; or assign "" to text
}
StringBuilder sb = new StringBuilder(text);
// If we allow editing we should allocate enough size (Length) within StringBuilder
if (textSize > sb.Length)
{
sb.Length = textSize;
}
bool result = GuiTextBoxMulti(bounds, sb, sb.Length, freeEdit);
// Back to string (StringBuilder can have been edited)
// You may want to add some logic here; e.g. trim trailing '\0'
text = sb.ToString();
return result;
}
}
public partial struct Color
{
// Example - Color.RED instead of RED
// Custom raylib color palette for amazing visuals
public static Color LIGHTGRAY = new Color(200, 200, 200, 255);
public static Color GRAY = new Color(130, 130, 130, 255);
public static Color DARKGRAY = new Color(80, 80, 80, 255);
public static Color YELLOW = new Color(253, 249, 0, 255);
public static Color GOLD = new Color(255, 203, 0, 255);
public static Color ORANGE = new Color(255, 161, 0, 255);
public static Color PINK = new Color(255, 109, 194, 255);
public static Color RED = new Color(230, 41, 55, 255);
public static Color MAROON = new Color(190, 33, 55, 255);
public static Color GREEN = new Color(0, 228, 48, 255);
public static Color LIME = new Color(0, 158, 47, 255);
public static Color DARKGREEN = new Color(0, 117, 44, 255);
public static Color SKYBLUE = new Color(102, 191, 255, 255);
public static Color BLUE = new Color(0, 121, 241, 255);
public static Color DARKBLUE = new Color(0, 82, 172, 255);
public static Color PURPLE = new Color(200, 122, 255, 255);
public static Color VIOLET = new Color(135, 60, 190, 255);
public static Color DARKPURPLE = new Color(112, 31, 126, 255);
public static Color BEIGE = new Color(211, 176, 131, 255);
public static Color BROWN = new Color(127, 106, 79, 255);
public static Color DARKBROWN = new Color(76, 63, 47, 255);
public static Color WHITE = new Color(255, 255, 255, 255);
public static Color BLACK = new Color(0, 0, 0, 255);
public static Color BLANK = new Color(0, 0, 0, 0);
public static Color MAGENTA = new Color(255, 0, 255, 255);
public static Color RAYWHITE = new Color(245, 245, 245, 255);
public Color(byte r, byte g, byte b, byte a)
{
this.r = r;
this.g = g;
this.b = b;
this.a = a;
}
public Color(int r, int g, int b, int a)
{
this.r = Convert.ToByte(r);
this.g = Convert.ToByte(g);
this.b = Convert.ToByte(b);
this.a = Convert.ToByte(a);
}
public override string ToString()
{
return string.Concat(r.ToString(), " ", g.ToString(), " ", b.ToString(), " ", a.ToString());
}
}
public partial struct Rectangle
{
public Rectangle(float x, float y, float width, float height)
{
this.x = x;
this.y = y;
this.width = width;
this.height = height;
}
}
public partial struct Camera3D
{
public Camera3D(Vector3 position, Vector3 target, Vector3 up, float fovy = 90, CameraType type = CameraType.CAMERA_PERSPECTIVE)
{
this.position = position;
this.target = target;
this.up = up;
this.fovy = fovy;
this.type = type;
}
}
public partial struct Ray
{
public Ray(Vector3 position, Vector3 direction)
{
this.position = position;
this.direction = direction;
}
}
// Utlity for accessing math functions through struct
public partial struct Vector2
{
public Vector2(float x, float y)
{
this.x = x;
this.y = y;
}
public Vector2(float value)
{
this.x = value;
this.y = value;
}
public override bool Equals(object obj)
{
return (obj is Vector2) && Equals((Vector2)obj);
}
public override int GetHashCode()
{
return x.GetHashCode() + y.GetHashCode();
}
public float Length()
{
return Raylib.Vector2Length(this);
}
public float LengthSquared()
{
return (x * x) + (y * y);
}
public override string ToString()
{
return "Vector2(" + x + " " + y + ")";
}
// common values
public static Vector2 Zero { get { return Raylib.Vector2Zero(); } }
public static Vector2 One { get { return Raylib.Vector2One(); } }
public static Vector2 UnitX { get { return new Vector2(1, 0); } }
public static Vector2 UnitY { get { return new Vector2(0, 1); } }
// convienient operators
public static bool operator ==(Vector2 v1, Vector2 v2)
{
return (v1.x == v2.x && v1.y == v2.y);
}
public static bool operator !=(Vector2 v1, Vector2 v2)
{
return !(v1 == v2);
}
public static bool operator >(Vector2 v1, Vector2 v2)
{
return v1.x > v2.x && v1.y > v2.y;
}
public static bool operator <(Vector2 v1, Vector2 v2)
{
return v1.x < v2.x && v1.y < v2.y;
}
public static Vector2 operator +(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2Add(v1, v2);
}
public static Vector2 operator -(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2Subtract(v1, v2);
}
public static Vector2 operator *(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2MultiplyV(v1, v2);
}
public static Vector2 operator *(Vector2 v, float scale)
{
return Raylib.Vector2Scale(v, scale);
}
public static Vector2 operator *(float scale, Vector2 v)
{
return Raylib.Vector2Scale(v, scale);
}
public static Vector2 operator /(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2DivideV(v1, v2);
}
public static Vector2 operator /(Vector2 v1, float div)
{
return Raylib.Vector2Divide(v1, div);
}
public static Vector2 operator -(Vector2 v1)
{
return Raylib.Vector2Negate(v1);
}
public static float Length(Vector2 v)
{
return Raylib.Vector2Length(v);
}
public static float Dot(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2DotProduct(v1, v2);
}
public static void Dot(ref Vector2 v1, ref Vector2 v2, out float result)
{
result = Raylib.Vector2DotProduct(v1, v2);
}
public static float DotProduct(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2DotProduct(v1, v2);
}
public static float Distance(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2Distance(v1, v2);
}
public static float DistanceSquared(Vector2 v1, Vector2 v2)
{
float a = v1.x - v2.x, b = v1.y - v2.y;
return (a * a) + (b * b);
}
public static float Angle(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2Angle(v1, v2);
}
public static Vector2 Scale(Vector2 v, float scale)
{
return Raylib.Vector2Scale(v, scale);
}
public static Vector2 Negate(Vector2 v)
{
return Raylib.Vector2Negate(v);
}
public static Vector2 Divide(Vector2 v, float div)
{
return Raylib.Vector2Divide(v, div);
}
public static void Normalize(ref Vector2 v)
{
v = Raylib.Vector2Normalize(v);
}
public static Vector2 Normalize(Vector2 v)
{
return Raylib.Vector2Normalize(v);
}
// Creates a new <see cref="Vector2"/> that contains a maximal values from the two vectors.
public static Vector2 Max(Vector2 v1, Vector2 v2)
{
return new Vector2(
v1.x > v2.x ? v1.x : v2.x,
v1.y > v2.y ? v1.y : v2.y);
}
// Creates a new <see cref="Vector2"/> that contains a minimal values from the two vectors.
public static Vector2 Min(Vector2 v1, Vector2 v2)
{
return new Vector2(
v1.x < v2.x ? v1.x : v2.x,
v1.y < v2.y ? v1.y : v2.y);
}
// Clamps the specified value within a range.
public static Vector2 Clamp(Vector2 value1, Vector2 min, Vector2 max)
{
return new Vector2(
Raylib.Clamp(value1.x, min.x, max.x),
Raylib.Clamp(value1.y, min.y, max.y));
}
}
// Vector3 type
public partial struct Vector3
{
public Vector3(float x, float y, float z)
{
this.x = x;
this.y = y;
this.z = z;
}
public Vector3(float value)
{
this.x = value;
this.y = value;
this.z = value;
}
// extensions
public override bool Equals(object obj)
{
return (obj is Vector3) && Equals((Vector3)obj);
}
public override int GetHashCode()
{
return x.GetHashCode() + y.GetHashCode() + z.GetHashCode();
}
public override string ToString()
{
return "Vector3(" + x + " " + y + " " + z + ")";
}
// common values
public static Vector3 Zero { get { return Raylib.Vector3Zero(); } }
public static Vector3 One { get { return Raylib.Vector3One(); } }
public static Vector3 UnitX { get { return new Vector3(1, 0, 0); } }
public static Vector3 UnitY { get { return new Vector3(0, 1, 0); } }
public static Vector3 UnitZ { get { return new Vector3(0, 0, 1); } }
// convienient operators
public static bool operator ==(Vector3 v1, Vector3 v2)
{ return (v1.x == v2.x && v1.y == v2.y && v1.z == v2.z);}
public static bool operator !=(Vector3 v1, Vector3 v2)
{
return !(v1 == v2);
}
public static bool operator >(Vector3 v1, Vector3 v2)
{
return v1.x > v2.x && v1.y > v2.y && v1.z > v2.z;
}
public static bool operator <(Vector3 v1, Vector3 v2)
{
return v1.x < v2.x && v1.y < v2.y && v1.z < v2.z;
}
public static Vector3 operator +(Vector3 v1, Vector3 v2)
{
return Raylib.Vector3Add(v1, v2);
}
public static Vector3 operator -(Vector3 v1, Vector3 v2)
{
return Raylib.Vector3Subtract(v1, v2);
}
public static Vector3 operator *(Vector3 v1, Vector3 v2)
{
return Raylib.Vector3MultiplyV(v1, v2);
}
public static Vector3 operator *(Vector3 v, float scale)
{
return Raylib.Vector3Scale(v, scale);
}
public static Vector3 operator *(float scale, Vector3 v)
{
return Raylib.Vector3Scale(v, scale);
}
public static Vector3 operator /(Vector3 v1, Vector3 v2)
{
return Raylib.Vector3DivideV(v1, v2);
}
public static Vector3 operator /(Vector3 v1, float div)
{
return Raylib.Vector3Divide(v1, div);
}
public static Vector3 operator -(Vector3 v1)
{
return Raylib.Vector3Negate(v1);
}
}
// Vector4 type
public partial struct Vector4
{
public Vector4(float x, float y, float z, float w)
{
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
public Vector4(float value)
{
x = value;
y = value;
z = value;
w = value;
}
public override bool Equals(object obj)
{
return (obj is Vector4) && Equals((Vector4)obj);
}
public override int GetHashCode()
{
return x.GetHashCode() + y.GetHashCode() + z.GetHashCode() + w.GetHashCode();
}
public override string ToString()
{
return "Vector4(" + x + " " + y + " " + z + " " + w + ")";
}
// convienient operators
public static bool operator ==(Vector4 v1, Vector4 v2)
{
return (v1.x == v2.x && v1.y == v2.y && v1.z == v2.z && v1.w == v2.w);
}
public static bool operator !=(Vector4 v1, Vector4 v2)
{
return !(v1 == v2);
}
public static bool operator >(Vector4 v1, Vector4 v2)
{
return v1.x > v2.x && v1.y > v2.y && v1.z > v2.z && v1.w > v2.w;
}
public static bool operator <(Vector4 v1, Vector4 v2)
{
return v1.x < v2.x && v1.y < v2.y && v1.z < v2.z && v1.w < v2.w;
}
}
}

View File

@ -150,7 +150,7 @@ namespace Raylib
// Creates a new circle physics body with generic parameters
[DllImport(nativeLibName, CallingConvention = CallingConvention.Cdecl)]
private static extern IntPtr CreatePhysicsBodyCircle(Vector2 pos, float radius, float density);
public static extern IntPtr CreatePhysicsBodyCircle(Vector2 pos, float radius, float density);
// Creates a new rectangle physics body with generic parameters
[DllImport(nativeLibName, CallingConvention = CallingConvention.Cdecl)]
@ -178,7 +178,7 @@ namespace Raylib
// Returns a physics body of the bodies pool at a specific index
[DllImport(nativeLibName, CallingConvention = CallingConvention.Cdecl)]
public static extern IntPtr GetPhysicsBodyImport(int index);
public static extern IntPtr GetPhysicsBody(int index);
// Returns the physics body shape type (PHYSICS_CIRCLE or PHYSICS_POLYGON)
[DllImport(nativeLibName, CallingConvention = CallingConvention.Cdecl)]

View File

@ -14,34 +14,373 @@ namespace Raylib
{
// Vector2 type
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Vector2
public struct Vector2
{
public float x;
public float y;
public Vector2(float x, float y)
{
this.x = x;
this.y = y;
}
public Vector2(float value)
{
this.x = value;
this.y = value;
}
public override bool Equals(object obj)
{
return (obj is Vector2) && Equals((Vector2)obj);
}
public override int GetHashCode()
{
return x.GetHashCode() + y.GetHashCode();
}
public float Length()
{
return Raylib.Vector2Length(this);
}
public float LengthSquared()
{
return (x * x) + (y * y);
}
public override string ToString()
{
return "Vector2(" + x + " " + y + ")";
}
// common values
public static Vector2 Zero { get { return Raylib.Vector2Zero(); } }
public static Vector2 One { get { return Raylib.Vector2One(); } }
public static Vector2 UnitX { get { return new Vector2(1, 0); } }
public static Vector2 UnitY { get { return new Vector2(0, 1); } }
// convienient operators
public static bool operator ==(Vector2 v1, Vector2 v2)
{
return (v1.x == v2.x && v1.y == v2.y);
}
public static bool operator !=(Vector2 v1, Vector2 v2)
{
return !(v1 == v2);
}
public static bool operator >(Vector2 v1, Vector2 v2)
{
return v1.x > v2.x && v1.y > v2.y;
}
public static bool operator <(Vector2 v1, Vector2 v2)
{
return v1.x < v2.x && v1.y < v2.y;
}
public static Vector2 operator +(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2Add(v1, v2);
}
public static Vector2 operator -(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2Subtract(v1, v2);
}
public static Vector2 operator *(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2MultiplyV(v1, v2);
}
public static Vector2 operator *(Vector2 v, float scale)
{
return Raylib.Vector2Scale(v, scale);
}
public static Vector2 operator *(float scale, Vector2 v)
{
return Raylib.Vector2Scale(v, scale);
}
public static Vector2 operator /(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2DivideV(v1, v2);
}
public static Vector2 operator /(Vector2 v1, float div)
{
return Raylib.Vector2Divide(v1, div);
}
public static Vector2 operator -(Vector2 v1)
{
return Raylib.Vector2Negate(v1);
}
public static float Length(Vector2 v)
{
return Raylib.Vector2Length(v);
}
public static float Dot(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2DotProduct(v1, v2);
}
public static void Dot(ref Vector2 v1, ref Vector2 v2, out float result)
{
result = Raylib.Vector2DotProduct(v1, v2);
}
public static float DotProduct(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2DotProduct(v1, v2);
}
public static float Distance(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2Distance(v1, v2);
}
public static float DistanceSquared(Vector2 v1, Vector2 v2)
{
float a = v1.x - v2.x, b = v1.y - v2.y;
return (a * a) + (b * b);
}
public static float Angle(Vector2 v1, Vector2 v2)
{
return Raylib.Vector2Angle(v1, v2);
}
public static Vector2 Scale(Vector2 v, float scale)
{
return Raylib.Vector2Scale(v, scale);
}
public static Vector2 Negate(Vector2 v)
{
return Raylib.Vector2Negate(v);
}
public static Vector2 Divide(Vector2 v, float div)
{
return Raylib.Vector2Divide(v, div);
}
public static void Normalize(ref Vector2 v)
{
v = Raylib.Vector2Normalize(v);
}
public static Vector2 Normalize(Vector2 v)
{
return Raylib.Vector2Normalize(v);
}
// Creates a new <see cref="Vector2"/> that contains a maximal values from the two vectors.
public static Vector2 Max(Vector2 v1, Vector2 v2)
{
return new Vector2(
v1.x > v2.x ? v1.x : v2.x,
v1.y > v2.y ? v1.y : v2.y);
}
// Creates a new <see cref="Vector2"/> that contains a minimal values from the two vectors.
public static Vector2 Min(Vector2 v1, Vector2 v2)
{
return new Vector2(
v1.x < v2.x ? v1.x : v2.x,
v1.y < v2.y ? v1.y : v2.y);
}
// Clamps the specified value within a range.
public static Vector2 Clamp(Vector2 value1, Vector2 min, Vector2 max)
{
return new Vector2(
Raylib.Clamp(value1.x, min.x, max.x),
Raylib.Clamp(value1.y, min.y, max.y));
}
}
// Vector3 type
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Vector3
public struct Vector3
{
public float x;
public float y;
public float z;
public Vector3(float x, float y, float z)
{
this.x = x;
this.y = y;
this.z = z;
}
public Vector3(float value)
{
this.x = value;
this.y = value;
this.z = value;
}
// extensions
public override bool Equals(object obj)
{
return (obj is Vector3) && Equals((Vector3)obj);
}
public override int GetHashCode()
{
return x.GetHashCode() + y.GetHashCode() + z.GetHashCode();
}
public override string ToString()
{
return "Vector3(" + x + " " + y + " " + z + ")";
}
// common values
public static Vector3 Zero { get { return Raylib.Vector3Zero(); } }
public static Vector3 One { get { return Raylib.Vector3One(); } }
public static Vector3 UnitX { get { return new Vector3(1, 0, 0); } }
public static Vector3 UnitY { get { return new Vector3(0, 1, 0); } }
public static Vector3 UnitZ { get { return new Vector3(0, 0, 1); } }
// convienient operators
public static bool operator ==(Vector3 v1, Vector3 v2)
{
return (v1.x == v2.x && v1.y == v2.y && v1.z == v2.z);
}
public static bool operator !=(Vector3 v1, Vector3 v2)
{
return !(v1 == v2);
}
public static bool operator >(Vector3 v1, Vector3 v2)
{
return v1.x > v2.x && v1.y > v2.y && v1.z > v2.z;
}
public static bool operator <(Vector3 v1, Vector3 v2)
{
return v1.x < v2.x && v1.y < v2.y && v1.z < v2.z;
}
public static Vector3 operator +(Vector3 v1, Vector3 v2)
{
return Raylib.Vector3Add(v1, v2);
}
public static Vector3 operator -(Vector3 v1, Vector3 v2)
{
return Raylib.Vector3Subtract(v1, v2);
}
public static Vector3 operator *(Vector3 v1, Vector3 v2)
{
return Raylib.Vector3MultiplyV(v1, v2);
}
public static Vector3 operator *(Vector3 v, float scale)
{
return Raylib.Vector3Scale(v, scale);
}
public static Vector3 operator *(float scale, Vector3 v)
{
return Raylib.Vector3Scale(v, scale);
}
public static Vector3 operator /(Vector3 v1, Vector3 v2)
{
return Raylib.Vector3DivideV(v1, v2);
}
public static Vector3 operator /(Vector3 v1, float div)
{
return Raylib.Vector3Divide(v1, div);
}
public static Vector3 operator -(Vector3 v1)
{
return Raylib.Vector3Negate(v1);
}
}
// Vector4 type
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Vector4
public struct Vector4
{
public float x;
public float y;
public float z;
public float w;
public Vector4(float x, float y, float z, float w)
{
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
public Vector4(float value)
{
x = value;
y = value;
z = value;
w = value;
}
public override bool Equals(object obj)
{
return (obj is Vector4) && Equals((Vector4)obj);
}
public override int GetHashCode()
{
return x.GetHashCode() + y.GetHashCode() + z.GetHashCode() + w.GetHashCode();
}
public override string ToString()
{
return "Vector4(" + x + " " + y + " " + z + " " + w + ")";
}
// convienient operators
public static bool operator ==(Vector4 v1, Vector4 v2)
{
return (v1.x == v2.x && v1.y == v2.y && v1.z == v2.z && v1.w == v2.w);
}
public static bool operator !=(Vector4 v1, Vector4 v2)
{
return !(v1 == v2);
}
public static bool operator >(Vector4 v1, Vector4 v2)
{
return v1.x > v2.x && v1.y > v2.y && v1.z > v2.z && v1.w > v2.w;
}
public static bool operator <(Vector4 v1, Vector4 v2)
{
return v1.x < v2.x && v1.y < v2.y && v1.z < v2.z && v1.w < v2.w;
}
}
// Matrix type (OpenGL style 4x4 - right handed, column major)
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Matrix
public struct Matrix
{
public float m0;
public float m4;
@ -63,28 +402,86 @@ namespace Raylib
// Color type, RGBA (32bit)
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Color
public struct Color
{
public byte r;
public byte g;
public byte b;
public byte a;
// Example - Color.RED instead of RED
// Custom raylib color palette for amazing visuals
public static Color LIGHTGRAY = new Color(200, 200, 200, 255);
public static Color GRAY = new Color(130, 130, 130, 255);
public static Color DARKGRAY = new Color(80, 80, 80, 255);
public static Color YELLOW = new Color(253, 249, 0, 255);
public static Color GOLD = new Color(255, 203, 0, 255);
public static Color ORANGE = new Color(255, 161, 0, 255);
public static Color PINK = new Color(255, 109, 194, 255);
public static Color RED = new Color(230, 41, 55, 255);
public static Color MAROON = new Color(190, 33, 55, 255);
public static Color GREEN = new Color(0, 228, 48, 255);
public static Color LIME = new Color(0, 158, 47, 255);
public static Color DARKGREEN = new Color(0, 117, 44, 255);
public static Color SKYBLUE = new Color(102, 191, 255, 255);
public static Color BLUE = new Color(0, 121, 241, 255);
public static Color DARKBLUE = new Color(0, 82, 172, 255);
public static Color PURPLE = new Color(200, 122, 255, 255);
public static Color VIOLET = new Color(135, 60, 190, 255);
public static Color DARKPURPLE = new Color(112, 31, 126, 255);
public static Color BEIGE = new Color(211, 176, 131, 255);
public static Color BROWN = new Color(127, 106, 79, 255);
public static Color DARKBROWN = new Color(76, 63, 47, 255);
public static Color WHITE = new Color(255, 255, 255, 255);
public static Color BLACK = new Color(0, 0, 0, 255);
public static Color BLANK = new Color(0, 0, 0, 0);
public static Color MAGENTA = new Color(255, 0, 255, 255);
public static Color RAYWHITE = new Color(245, 245, 245, 255);
public Color(byte r, byte g, byte b, byte a)
{
this.r = r;
this.g = g;
this.b = b;
this.a = a;
}
public Color(int r, int g, int b, int a)
{
this.r = Convert.ToByte(r);
this.g = Convert.ToByte(g);
this.b = Convert.ToByte(b);
this.a = Convert.ToByte(a);
}
public override string ToString()
{
return string.Concat(r.ToString(), " ", g.ToString(), " ", b.ToString(), " ", a.ToString());
}
}
// Rectangle type
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Rectangle
public struct Rectangle
{
public float x;
public float y;
public float width;
public float height;
public Rectangle(float x, float y, float width, float height)
{
this.x = x;
this.y = y;
this.width = width;
this.height = height;
}
}
// Image type, bpp always RGBA (32bit)
// NOTE: Data stored in CPU memory (RAM)
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Image
public struct Image
{
public IntPtr data; // Image raw data
public int width; // Image base width
@ -96,7 +493,7 @@ namespace Raylib
// Texture2D type
// NOTE: Data stored in GPU memory
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Texture2D
public struct Texture2D
{
public uint id; // OpenGL texture id
public int width; // Texture base width
@ -107,7 +504,7 @@ namespace Raylib
// RenderTexture2D type, for texture rendering
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct RenderTexture2D
public struct RenderTexture2D
{
public uint id; // OpenGL Framebuffer Object (FBO) id
public Texture2D texture; // Color buffer attachment texture
@ -118,7 +515,7 @@ namespace Raylib
// N-Patch layout info
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct NPatchInfo
public struct NPatchInfo
{
public Rectangle sourceRec; // Region in the texture
public int left; // left border offset
@ -130,7 +527,7 @@ namespace Raylib
// Font character info
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct CharInfo
public struct CharInfo
{
public int value; // Character value (Unicode)
public Rectangle rec; // Character rectangle in sprite font
@ -142,7 +539,7 @@ namespace Raylib
// Font type, includes texture and charSet array data
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Font
public struct Font
{
public Texture2D texture; // Font texture
public int baseSize; // Base size (default chars height)
@ -152,18 +549,27 @@ namespace Raylib
// Camera type, defines a camera position/orientation in 3d space
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Camera3D
public struct Camera3D
{
public Vector3 position; // Camera position
public Vector3 target; // Camera target it looks-at
public Vector3 up; // Camera up vector (rotation over its axis)
public float fovy; // Camera field-of-view apperture in Y (degrees) in perspective, used as near plane width in orthographic
public CameraType type; // Camera type, defines projection type: CAMERA_PERSPECTIVE or CAMERA_ORTHOGRAPHIC
public Camera3D(Vector3 position, Vector3 target, Vector3 up, float fovy = 90, CameraType type = CameraType.CAMERA_PERSPECTIVE)
{
this.position = position;
this.target = target;
this.up = up;
this.fovy = fovy;
this.type = type;
}
}
// Camera2D type, defines a 2d camera
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Camera2D
public struct Camera2D
{
public Vector2 offset; // Camera offset (displacement from target)
public Vector2 target; // Camera target (rotation and zoom origin)
@ -174,7 +580,7 @@ namespace Raylib
// Vertex data definning a mesh
// NOTE: Data stored in CPU memory (and GPU)
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Mesh
public struct Mesh
{
public int vertexCount; // Number of vertices stored in arrays
public int triangleCount; // Number of triangles stored (indexed or not)
@ -204,7 +610,7 @@ namespace Raylib
// Material texture map
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct MaterialMap
public struct MaterialMap
{
public Texture2D texture; // Material map texture
public Color color; // Material map color
@ -213,7 +619,7 @@ namespace Raylib
// Material type (generic)
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Material
public struct Material
{
public Shader shader; // Material shader
[MarshalAs(UnmanagedType.ByValArray, SizeConst = 12)]
@ -223,7 +629,7 @@ namespace Raylib
// Transformation properties
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Transform
public struct Transform
{
public Vector3 translation; // Translation
public Vector4 rotation; // Rotation
@ -232,7 +638,7 @@ namespace Raylib
// Bone information
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct BoneInfo
public struct BoneInfo
{
[MarshalAs(UnmanagedType.ByValArray, SizeConst = 32)]
public char[] name; // Bone name
@ -241,7 +647,7 @@ namespace Raylib
// Model type
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Model
public struct Model
{
public Matrix transform; // Local transform matrix
public int meshCount; // Number of meshes
@ -256,7 +662,7 @@ namespace Raylib
// Model animation
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct ModelAnimation
public struct ModelAnimation
{
public int boneCount; // Number of bones
public BoneInfo[] bones; // Bones information (skeleton)
@ -266,15 +672,21 @@ namespace Raylib
// Ray type (useful for raycast)
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Ray
public struct Ray
{
public Vector3 position; // Ray position (origin)
public Vector3 direction; // Ray direction
public Ray(Vector3 position, Vector3 direction)
{
this.position = position;
this.direction = direction;
}
}
// Raycast hit information
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct RayHitInfo
public struct RayHitInfo
{
public bool hit; // Did the ray hit something?
public float distance; // Distance to nearest hit
@ -284,15 +696,21 @@ namespace Raylib
// Bounding box type
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct BoundingBox
public struct BoundingBox
{
public Vector3 min; // Minimum vertex box-corner
public Vector3 max; // Maximum vertex box-corner
public BoundingBox(Vector3 min, Vector3 max)
{
this.min = min;
this.max = max;
}
}
// Wave type, defines audio wave data
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Wave
public struct Wave
{
public uint sampleCount; // Number of samples
public uint sampleRate; // Frequency (samples per second)
@ -303,7 +721,7 @@ namespace Raylib
// Sound source type
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Sound
public struct Sound
{
public IntPtr audioBuffer; // Pointer to internal data used by the audio system
public uint source; // Audio source id
@ -314,7 +732,7 @@ namespace Raylib
// Audio stream type
// NOTE: Useful to create custom audio streams not bound to a specific file
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct AudioStream
public struct AudioStream
{
public uint sampleRate; // Frequency (samples per second)
public uint sampleSize; // Bit depth (bits per sample): 8, 16, 32 (24 not supported)
@ -329,7 +747,7 @@ namespace Raylib
// Head-Mounted-Display device parameters
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct VrDeviceInfo
public struct VrDeviceInfo
{
public int hResolution; // HMD horizontal resolution in pixels
public int vResolution; // HMD vertical resolution in pixels
@ -760,6 +1178,13 @@ namespace Raylib
public const float RAD2DEG = 180.0f / (float)Math.PI;
public const int MAX_SHADER_LOCATIONS = 32;
public const int MAX_MATERIAL_MAPS = 12;
public const int MAX_TOUCH_POINTS = 10;
// extension providing SubText
public static string SubText(this string input, int position, int length)
{
return input.Substring(position, Math.Min(length, input.Length));
}
//------------------------------------------------------------------------------------
// Window and Graphics Device Functions (Module: core)