Initial commit
This commit is contained in:
23
exercises/23_conversions/README.md
Normal file
23
exercises/23_conversions/README.md
Normal file
@@ -0,0 +1,23 @@
|
||||
# Type conversions
|
||||
|
||||
Rust offers a multitude of ways to convert a value of a given type into another type.
|
||||
|
||||
The simplest form of type conversion is a type cast expression. It is denoted with the binary operator `as`. For instance, `println!("{}", 1 + 1.0);` would not compile, since `1` is an integer while `1.0` is a float. However, `println!("{}", 1 as f32 + 1.0)` should compile. The exercise [`using_as`](using_as.rs) tries to cover this.
|
||||
|
||||
Rust also offers traits that facilitate type conversions upon implementation. These traits can be found under the [`convert`](https://doc.rust-lang.org/std/convert/index.html) module.
|
||||
The traits are the following:
|
||||
|
||||
- `From` and `Into` covered in [`from_into`](from_into.rs)
|
||||
- `TryFrom` and `TryInto` covered in [`try_from_into`](try_from_into.rs)
|
||||
- `AsRef` and `AsMut` covered in [`as_ref_mut`](as_ref_mut.rs)
|
||||
|
||||
Furthermore, the `std::str` module offers a trait called [`FromStr`](https://doc.rust-lang.org/std/str/trait.FromStr.html) which helps with converting strings into target types via the `parse` method on strings. If properly implemented for a given type `Person`, then `let p: Person = "Mark,20".parse().unwrap()` should both compile and run without panicking.
|
||||
|
||||
These should be the main ways ***within the standard library*** to convert data into your desired types.
|
||||
|
||||
## Further information
|
||||
|
||||
These are not directly covered in the book, but the standard library has a great documentation for it.
|
||||
|
||||
- [conversions](https://doc.rust-lang.org/std/convert/index.html)
|
||||
- [`FromStr` trait](https://doc.rust-lang.org/std/str/trait.FromStr.html)
|
||||
64
exercises/23_conversions/as_ref_mut.rs
Normal file
64
exercises/23_conversions/as_ref_mut.rs
Normal file
@@ -0,0 +1,64 @@
|
||||
// AsRef and AsMut allow for cheap reference-to-reference conversions. Read more
|
||||
// about them at https://doc.rust-lang.org/std/convert/trait.AsRef.html and
|
||||
// https://doc.rust-lang.org/std/convert/trait.AsMut.html, respectively.
|
||||
|
||||
// Obtain the number of bytes (not characters) in the given argument
|
||||
// (`.len()` returns the number of bytes in a string).
|
||||
// TODO: Add the `AsRef` trait appropriately as a trait bound.
|
||||
fn byte_counter<T: AsRef<str>>(arg: T) -> usize {
|
||||
arg.as_ref().len()
|
||||
}
|
||||
|
||||
// Obtain the number of characters (not bytes) in the given argument.
|
||||
// TODO: Add the `AsRef` trait appropriately as a trait bound.
|
||||
fn char_counter<T: AsRef<str>>(arg: T) -> usize {
|
||||
arg.as_ref().chars().count()
|
||||
}
|
||||
|
||||
// Squares a number using `as_mut()`.
|
||||
// TODO: Add the appropriate trait bound.
|
||||
fn num_sq<T: AsMut<u32>>(arg: &mut T) {
|
||||
// TODO: Implement the function body.
|
||||
let arg = arg.as_mut();
|
||||
*arg *= *arg;
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// You can optionally experiment here.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn different_counts() {
|
||||
let s = "Café au lait";
|
||||
assert_ne!(char_counter(s), byte_counter(s));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn same_counts() {
|
||||
let s = "Cafe au lait";
|
||||
assert_eq!(char_counter(s), byte_counter(s));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn different_counts_using_string() {
|
||||
let s = String::from("Café au lait");
|
||||
assert_ne!(char_counter(s.clone()), byte_counter(s));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn same_counts_using_string() {
|
||||
let s = String::from("Cafe au lait");
|
||||
assert_eq!(char_counter(s.clone()), byte_counter(s));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn mut_box() {
|
||||
let mut num: Box<u32> = Box::new(3);
|
||||
num_sq(&mut num);
|
||||
assert_eq!(*num, 9);
|
||||
}
|
||||
}
|
||||
148
exercises/23_conversions/from_into.rs
Normal file
148
exercises/23_conversions/from_into.rs
Normal file
@@ -0,0 +1,148 @@
|
||||
// The `From` trait is used for value-to-value conversions. If `From` is
|
||||
// implemented, an implementation of `Into` is automatically provided.
|
||||
// You can read more about it in the documentation:
|
||||
// https://doc.rust-lang.org/std/convert/trait.From.html
|
||||
|
||||
#[derive(Debug)]
|
||||
struct Person {
|
||||
name: String,
|
||||
age: u8,
|
||||
}
|
||||
|
||||
// We implement the Default trait to use it as a fallback when the provided
|
||||
// string is not convertible into a `Person` object.
|
||||
impl Default for Person {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
name: String::from("John"),
|
||||
age: 30,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Complete this `From` implementation to be able to parse a `Person`
|
||||
// out of a string in the form of "Mark,20".
|
||||
// Note that you'll need to parse the age component into a `u8` with something
|
||||
// like `"4".parse::<u8>()`.
|
||||
//
|
||||
// Steps:
|
||||
// 1. Split the given string on the commas present in it.
|
||||
// 2. If the split operation returns less or more than 2 elements, return the
|
||||
// default of `Person`.
|
||||
// 3. Use the first element from the split operation as the name.
|
||||
// 4. If the name is empty, return the default of `Person`.
|
||||
// 5. Parse the second element from the split operation into a `u8` as the age.
|
||||
// 6. If parsing the age fails, return the default of `Person`.
|
||||
impl From<&str> for Person {
|
||||
fn from(s: &str) -> Self {
|
||||
let mut split = s.split(',');
|
||||
let (Some(name), Some(age), None) = (split.next(), split.next(), split.next()) else {
|
||||
return Self::default();
|
||||
};
|
||||
|
||||
if name.is_empty() {
|
||||
return Self::default();
|
||||
}
|
||||
|
||||
let Ok(age) = age.parse() else {
|
||||
return Self::default();
|
||||
};
|
||||
|
||||
Self {
|
||||
name: name.into(),
|
||||
age,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// Use the `from` function.
|
||||
let p1 = Person::from("Mark,20");
|
||||
println!("{p1:?}");
|
||||
|
||||
// Since `From` is implemented for Person, we are able to use `Into`.
|
||||
let p2: Person = "Gerald,70".into();
|
||||
println!("{p2:?}");
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_default() {
|
||||
let dp = Person::default();
|
||||
assert_eq!(dp.name, "John");
|
||||
assert_eq!(dp.age, 30);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bad_convert() {
|
||||
let p = Person::from("");
|
||||
assert_eq!(p.name, "John");
|
||||
assert_eq!(p.age, 30);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_good_convert() {
|
||||
let p = Person::from("Mark,20");
|
||||
assert_eq!(p.name, "Mark");
|
||||
assert_eq!(p.age, 20);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bad_age() {
|
||||
let p = Person::from("Mark,twenty");
|
||||
assert_eq!(p.name, "John");
|
||||
assert_eq!(p.age, 30);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_missing_comma_and_age() {
|
||||
let p: Person = Person::from("Mark");
|
||||
assert_eq!(p.name, "John");
|
||||
assert_eq!(p.age, 30);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_missing_age() {
|
||||
let p: Person = Person::from("Mark,");
|
||||
assert_eq!(p.name, "John");
|
||||
assert_eq!(p.age, 30);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_missing_name() {
|
||||
let p: Person = Person::from(",1");
|
||||
assert_eq!(p.name, "John");
|
||||
assert_eq!(p.age, 30);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_missing_name_and_age() {
|
||||
let p: Person = Person::from(",");
|
||||
assert_eq!(p.name, "John");
|
||||
assert_eq!(p.age, 30);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_missing_name_and_invalid_age() {
|
||||
let p: Person = Person::from(",one");
|
||||
assert_eq!(p.name, "John");
|
||||
assert_eq!(p.age, 30);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_trailing_comma() {
|
||||
let p: Person = Person::from("Mike,32,");
|
||||
assert_eq!(p.name, "John");
|
||||
assert_eq!(p.age, 30);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_trailing_comma_and_some_string() {
|
||||
let p: Person = Person::from("Mike,32,dog");
|
||||
assert_eq!(p.name, "John");
|
||||
assert_eq!(p.age, 30);
|
||||
}
|
||||
}
|
||||
130
exercises/23_conversions/from_str.rs
Normal file
130
exercises/23_conversions/from_str.rs
Normal file
@@ -0,0 +1,130 @@
|
||||
// This is similar to the previous `from_into` exercise. But this time, we'll
|
||||
// implement `FromStr` and return errors instead of falling back to a default
|
||||
// value. Additionally, upon implementing `FromStr`, you can use the `parse`
|
||||
// method on strings to generate an object of the implementor type. You can read
|
||||
// more about it in the documentation:
|
||||
// https://doc.rust-lang.org/std/str/trait.FromStr.html
|
||||
|
||||
use std::num::ParseIntError;
|
||||
use std::str::FromStr;
|
||||
|
||||
#[derive(Debug, PartialEq)]
|
||||
struct Person {
|
||||
name: String,
|
||||
age: u8,
|
||||
}
|
||||
|
||||
// We will use this error type for the `FromStr` implementation.
|
||||
#[derive(Debug, PartialEq)]
|
||||
enum ParsePersonError {
|
||||
// Incorrect number of fields
|
||||
BadLen,
|
||||
// Empty name field
|
||||
NoName,
|
||||
// Wrapped error from parse::<u8>()
|
||||
ParseInt(ParseIntError),
|
||||
}
|
||||
|
||||
// TODO: Complete this `FromStr` implementation to be able to parse a `Person`
|
||||
// out of a string in the form of "Mark,20".
|
||||
// Note that you'll need to parse the age component into a `u8` with something
|
||||
// like `"4".parse::<u8>()`.
|
||||
//
|
||||
// Steps:
|
||||
// 1. Split the given string on the commas present in it.
|
||||
// 2. If the split operation returns less or more than 2 elements, return the
|
||||
// error `ParsePersonError::BadLen`.
|
||||
// 3. Use the first element from the split operation as the name.
|
||||
// 4. If the name is empty, return the error `ParsePersonError::NoName`.
|
||||
// 5. Parse the second element from the split operation into a `u8` as the age.
|
||||
// 6. If parsing the age fails, return the error `ParsePersonError::ParseInt`.
|
||||
impl FromStr for Person {
|
||||
type Err = ParsePersonError;
|
||||
|
||||
fn from_str(s: &str) -> Result<Self, Self::Err> {
|
||||
let mut split = s.split(',');
|
||||
|
||||
let (Some(name), Some(age), None) = (split.next(), split.next(), split.next()) else {
|
||||
return Err(ParsePersonError::BadLen);
|
||||
};
|
||||
|
||||
if name.is_empty() {
|
||||
return Err(ParsePersonError::NoName);
|
||||
}
|
||||
|
||||
let age = age.parse().map_err(ParsePersonError::ParseInt)?;
|
||||
|
||||
Ok(Self {
|
||||
name: name.into(),
|
||||
age,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let p = "Mark,20".parse::<Person>();
|
||||
println!("{p:?}");
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use ParsePersonError::*;
|
||||
|
||||
#[test]
|
||||
fn empty_input() {
|
||||
assert_eq!("".parse::<Person>(), Err(BadLen));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn good_input() {
|
||||
let p = "John,32".parse::<Person>();
|
||||
assert!(p.is_ok());
|
||||
let p = p.unwrap();
|
||||
assert_eq!(p.name, "John");
|
||||
assert_eq!(p.age, 32);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn missing_age() {
|
||||
assert!(matches!("John,".parse::<Person>(), Err(ParseInt(_))));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn invalid_age() {
|
||||
assert!(matches!("John,twenty".parse::<Person>(), Err(ParseInt(_))));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn missing_comma_and_age() {
|
||||
assert_eq!("John".parse::<Person>(), Err(BadLen));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn missing_name() {
|
||||
assert_eq!(",1".parse::<Person>(), Err(NoName));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn missing_name_and_age() {
|
||||
assert!(matches!(",".parse::<Person>(), Err(NoName | ParseInt(_))));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn missing_name_and_invalid_age() {
|
||||
assert!(matches!(
|
||||
",one".parse::<Person>(),
|
||||
Err(NoName | ParseInt(_)),
|
||||
));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn trailing_comma() {
|
||||
assert_eq!("John,32,".parse::<Person>(), Err(BadLen));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn trailing_comma_and_some_string() {
|
||||
assert_eq!("John,32,man".parse::<Person>(), Err(BadLen));
|
||||
}
|
||||
}
|
||||
197
exercises/23_conversions/try_from_into.rs
Normal file
197
exercises/23_conversions/try_from_into.rs
Normal file
@@ -0,0 +1,197 @@
|
||||
// `TryFrom` is a simple and safe type conversion that may fail in a controlled
|
||||
// way under some circumstances. Basically, this is the same as `From`. The main
|
||||
// difference is that this should return a `Result` type instead of the target
|
||||
// type itself. You can read more about it in the documentation:
|
||||
// https://doc.rust-lang.org/std/convert/trait.TryFrom.html
|
||||
|
||||
#![allow(clippy::useless_vec)]
|
||||
use std::convert::{TryFrom, TryInto};
|
||||
|
||||
#[derive(Debug, PartialEq)]
|
||||
struct Color {
|
||||
red: u8,
|
||||
green: u8,
|
||||
blue: u8,
|
||||
}
|
||||
|
||||
// We will use this error type for the `TryFrom` conversions.
|
||||
#[derive(Debug, PartialEq)]
|
||||
enum IntoColorError {
|
||||
// Incorrect length of slice
|
||||
BadLen,
|
||||
// Integer conversion error
|
||||
IntConversion,
|
||||
}
|
||||
|
||||
// TODO: Tuple implementation.
|
||||
// Correct RGB color values must be integers in the 0..=255 range.
|
||||
impl TryFrom<(i16, i16, i16)> for Color {
|
||||
type Error = IntoColorError;
|
||||
|
||||
fn try_from(tuple: (i16, i16, i16)) -> Result<Self, Self::Error> {
|
||||
let (Ok(red), Ok(green), Ok(blue)) = (
|
||||
u8::try_from(tuple.0),
|
||||
u8::try_from(tuple.1),
|
||||
u8::try_from(tuple.2),
|
||||
) else {
|
||||
return Err(IntoColorError::IntConversion);
|
||||
};
|
||||
|
||||
Ok(Self { red, green, blue })
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Array implementation.
|
||||
impl TryFrom<[i16; 3]> for Color {
|
||||
type Error = IntoColorError;
|
||||
|
||||
fn try_from(arr: [i16; 3]) -> Result<Self, Self::Error> {
|
||||
Self::try_from((arr[0], arr[1], arr[2]))
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Slice implementation.
|
||||
// This implementation needs to check the slice length.
|
||||
impl TryFrom<&[i16]> for Color {
|
||||
type Error = IntoColorError;
|
||||
|
||||
fn try_from(slice: &[i16]) -> Result<Self, Self::Error> {
|
||||
// Check the length.
|
||||
if slice.len() != 3 {
|
||||
return Err(IntoColorError::BadLen);
|
||||
}
|
||||
|
||||
// Reuse the implementation for a tuple.
|
||||
Self::try_from((slice[0], slice[1], slice[2]))
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// Using the `try_from` function.
|
||||
let c1 = Color::try_from((183, 65, 14));
|
||||
println!("{c1:?}");
|
||||
|
||||
// Since `TryFrom` is implemented for `Color`, we can use `TryInto`.
|
||||
let c2: Result<Color, _> = [183, 65, 14].try_into();
|
||||
println!("{c2:?}");
|
||||
|
||||
let v = vec![183, 65, 14];
|
||||
// With slice we should use the `try_from` function
|
||||
let c3 = Color::try_from(&v[..]);
|
||||
println!("{c3:?}");
|
||||
// or put the slice within round brackets and use `try_into`.
|
||||
let c4: Result<Color, _> = (&v[..]).try_into();
|
||||
println!("{c4:?}");
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use IntoColorError::*;
|
||||
|
||||
#[test]
|
||||
fn test_tuple_out_of_range_positive() {
|
||||
assert_eq!(Color::try_from((256, 1000, 10000)), Err(IntConversion));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_tuple_out_of_range_negative() {
|
||||
assert_eq!(Color::try_from((-1, -10, -256)), Err(IntConversion));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_tuple_sum() {
|
||||
assert_eq!(Color::try_from((-1, 255, 255)), Err(IntConversion));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_tuple_correct() {
|
||||
let c: Result<Color, _> = (183, 65, 14).try_into();
|
||||
assert!(c.is_ok());
|
||||
assert_eq!(
|
||||
c.unwrap(),
|
||||
Color {
|
||||
red: 183,
|
||||
green: 65,
|
||||
blue: 14,
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_array_out_of_range_positive() {
|
||||
let c: Result<Color, _> = [1000, 10000, 256].try_into();
|
||||
assert_eq!(c, Err(IntConversion));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_array_out_of_range_negative() {
|
||||
let c: Result<Color, _> = [-10, -256, -1].try_into();
|
||||
assert_eq!(c, Err(IntConversion));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_array_sum() {
|
||||
let c: Result<Color, _> = [-1, 255, 255].try_into();
|
||||
assert_eq!(c, Err(IntConversion));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_array_correct() {
|
||||
let c: Result<Color, _> = [183, 65, 14].try_into();
|
||||
assert!(c.is_ok());
|
||||
assert_eq!(
|
||||
c.unwrap(),
|
||||
Color {
|
||||
red: 183,
|
||||
green: 65,
|
||||
blue: 14
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_slice_out_of_range_positive() {
|
||||
let arr = [10000, 256, 1000];
|
||||
assert_eq!(Color::try_from(&arr[..]), Err(IntConversion));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_slice_out_of_range_negative() {
|
||||
let arr = [-256, -1, -10];
|
||||
assert_eq!(Color::try_from(&arr[..]), Err(IntConversion));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_slice_sum() {
|
||||
let arr = [-1, 255, 255];
|
||||
assert_eq!(Color::try_from(&arr[..]), Err(IntConversion));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_slice_correct() {
|
||||
let v = vec![183, 65, 14];
|
||||
let c: Result<Color, _> = Color::try_from(&v[..]);
|
||||
assert!(c.is_ok());
|
||||
assert_eq!(
|
||||
c.unwrap(),
|
||||
Color {
|
||||
red: 183,
|
||||
green: 65,
|
||||
blue: 14,
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_slice_excess_length() {
|
||||
let v = vec![0, 0, 0, 0];
|
||||
assert_eq!(Color::try_from(&v[..]), Err(BadLen));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_slice_insufficient_length() {
|
||||
let v = vec![0, 0];
|
||||
assert_eq!(Color::try_from(&v[..]), Err(BadLen));
|
||||
}
|
||||
}
|
||||
24
exercises/23_conversions/using_as.rs
Normal file
24
exercises/23_conversions/using_as.rs
Normal file
@@ -0,0 +1,24 @@
|
||||
// Type casting in Rust is done via the usage of the `as` operator.
|
||||
// Note that the `as` operator is not only used when type casting. It also helps
|
||||
// with renaming imports.
|
||||
|
||||
fn average(values: &[f64]) -> f64 {
|
||||
let total = values.iter().sum::<f64>();
|
||||
// TODO: Make a conversion before dividing.
|
||||
total / values.len() as f64
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let values = [3.5, 0.3, 13.0, 11.7];
|
||||
println!("{}", average(&values));
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn returns_proper_type_and_value() {
|
||||
assert_eq!(average(&[3.5, 0.3, 13.0, 11.7]), 7.125);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user