1
0

Initial commit

This commit is contained in:
2025-12-16 20:38:14 +00:00
commit 7feaccd899
221 changed files with 8079 additions and 0 deletions

View File

@@ -0,0 +1,8 @@
# Iterators
This section will teach you about Iterators.
## Further information
- [Iterator](https://doc.rust-lang.org/book/ch13-02-iterators.html)
- [Iterator documentation](https://doc.rust-lang.org/stable/std/iter/)

View File

@@ -0,0 +1,25 @@
// When performing operations on elements within a collection, iterators are
// essential. This module helps you get familiar with the structure of using an
// iterator and how to go through elements within an iterable collection.
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
#[test]
fn iterators() {
let my_fav_fruits = ["banana", "custard apple", "avocado", "peach", "raspberry"];
// TODO: Create an iterator over the array.
let mut fav_fruits_iterator = my_fav_fruits.iter();
assert_eq!(fav_fruits_iterator.next(), Some(&"banana"));
assert_eq!(fav_fruits_iterator.next(), Some(&"custard apple")); // TODO: Replace `todo!()`
assert_eq!(fav_fruits_iterator.next(), Some(&"avocado"));
assert_eq!(fav_fruits_iterator.next(), Some(&"peach")); // TODO: Replace `todo!()`
assert_eq!(fav_fruits_iterator.next(), Some(&"raspberry"));
assert_eq!(fav_fruits_iterator.next(), None); // TODO: Replace `todo!()`
}
}

View File

@@ -0,0 +1,59 @@
// In this exercise, you'll learn some of the unique advantages that iterators
// can offer.
// TODO: Complete the `capitalize_first` function.
// "hello" -> "Hello"
fn capitalize_first(input: &str) -> String {
let mut chars = input.chars();
match chars.next() {
None => String::new(),
Some(first) => first.to_uppercase().to_string() + chars.as_str(),
}
}
// TODO: Apply the `capitalize_first` function to a slice of string slices.
// Return a vector of strings.
// ["hello", "world"] -> ["Hello", "World"]
fn capitalize_words_vector(words: &[&str]) -> Vec<String> {
// ???
words.iter().map(|word| capitalize_first(word)).collect()
}
// TODO: Apply the `capitalize_first` function again to a slice of string
// slices. Return a single string.
// ["hello", " ", "world"] -> "Hello World"
fn capitalize_words_string(words: &[&str]) -> String {
// ???
words.iter().map(|word| capitalize_first(word)).collect()
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_success() {
assert_eq!(capitalize_first("hello"), "Hello");
}
#[test]
fn test_empty() {
assert_eq!(capitalize_first(""), "");
}
#[test]
fn test_iterate_string_vec() {
let words = vec!["hello", "world"];
assert_eq!(capitalize_words_vector(&words), ["Hello", "World"]);
}
#[test]
fn test_iterate_into_string() {
let words = vec!["hello", " ", "world"];
assert_eq!(capitalize_words_string(&words), "Hello World");
}
}

View File

@@ -0,0 +1,84 @@
#[derive(Debug, PartialEq, Eq)]
enum DivisionError {
// Example: 42 / 0
DivideByZero,
// Only case for `i64`: `i64::MIN / -1` because the result is `i64::MAX + 1`
IntegerOverflow,
// Example: 5 / 2 = 2.5
NotDivisible,
}
// TODO: Calculate `a` divided by `b` if `a` is evenly divisible by `b`.
// Otherwise, return a suitable error.
fn divide(a: i64, b: i64) -> Result<i64, DivisionError> {
if b == 0 {
return Err(DivisionError::DivideByZero);
}
if a == i64::MIN && b == -1 {
return Err(DivisionError::IntegerOverflow);
}
if a % b != 0 {
return Err(DivisionError::NotDivisible);
}
Ok(a / b)
}
// TODO: Add the correct return type and complete the function body.
// Desired output: `Ok([1, 11, 1426, 3])`
fn result_with_list() -> Result<Vec<i64>, DivisionError> {
let numbers = [27, 297, 38502, 81];
let division_results = numbers.into_iter().map(|n| divide(n, 27));
division_results.collect()
}
// TODO: Add the correct return type and complete the function body.
// Desired output: `[Ok(1), Ok(11), Ok(1426), Ok(3)]`
fn list_of_results() -> Vec<Result<i64, DivisionError>> {
let numbers = [27, 297, 38502, 81];
let division_results = numbers.into_iter().map(|n| divide(n, 27));
division_results.collect()
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_success() {
assert_eq!(divide(81, 9), Ok(9));
}
#[test]
fn test_divide_by_0() {
assert_eq!(divide(81, 0), Err(DivisionError::DivideByZero));
}
#[test]
fn test_integer_overflow() {
assert_eq!(divide(i64::MIN, -1), Err(DivisionError::IntegerOverflow));
}
#[test]
fn test_not_divisible() {
assert_eq!(divide(81, 6), Err(DivisionError::NotDivisible));
}
#[test]
fn test_divide_0_by_something() {
assert_eq!(divide(0, 81), Ok(0));
}
#[test]
fn test_result_with_list() {
assert_eq!(result_with_list().unwrap(), [1, 11, 1426, 3]);
}
#[test]
fn test_list_of_results() {
assert_eq!(list_of_results(), [Ok(1), Ok(11), Ok(1426), Ok(3)]);
}
}

View File

@@ -0,0 +1,48 @@
fn factorial(num: u64) -> u64 {
// TODO: Complete this function to return the factorial of `num` which is
// defined as `1 * 2 * 3 * … * num`.
// https://en.wikipedia.org/wiki/Factorial
//
// Do not use:
// - early returns (using the `return` keyword explicitly)
// Try not to use:
// - imperative style loops (for/while)
// - additional variables
// For an extra challenge, don't use:
// - recursion
let mut result = 1;
for x in 2..=num {
result *= x;
}
result
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn factorial_of_0() {
assert_eq!(factorial(0), 1);
}
#[test]
fn factorial_of_1() {
assert_eq!(factorial(1), 1);
}
#[test]
fn factorial_of_2() {
assert_eq!(factorial(2), 2);
}
#[test]
fn factorial_of_4() {
assert_eq!(factorial(4), 24);
}
}

View File

@@ -0,0 +1,158 @@
// Let's define a simple model to track Rustlings' exercise progress. Progress
// will be modelled using a hash map. The name of the exercise is the key and
// the progress is the value. Two counting functions were created to count the
// number of exercises with a given progress. Recreate this counting
// functionality using iterators. Try to not use imperative loops (for/while).
use std::collections::HashMap;
#[derive(Clone, Copy, PartialEq, Eq)]
enum Progress {
None,
Some,
Complete,
}
fn count_for(map: &HashMap<String, Progress>, value: Progress) -> usize {
let mut count = 0;
for val in map.values() {
if *val == value {
count += 1;
}
}
count
}
// TODO: Implement the functionality of `count_for` but with an iterator instead
// of a `for` loop.
fn count_iterator(map: &HashMap<String, Progress>, value: Progress) -> usize {
// `map` is a hash map with `String` keys and `Progress` values.
// map = { "variables1": Complete, "from_str": None, … }
map.values().filter(|val| **val == value).count()
}
fn count_collection_for(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
let mut count = 0;
for map in collection {
for val in map.values() {
if *val == value {
count += 1;
}
}
}
count
}
// TODO: Implement the functionality of `count_collection_for` but with an
// iterator instead of a `for` loop.
fn count_collection_iterator(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
// `collection` is a slice of hash maps.
// collection = [{ "variables1": Complete, "from_str": None, … },
// { "variables2": Complete, … }, … ]
collection
.iter()
.map(|map| count_iterator(map, value))
.sum()
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
fn get_map() -> HashMap<String, Progress> {
use Progress::*;
let mut map = HashMap::new();
map.insert(String::from("variables1"), Complete);
map.insert(String::from("functions1"), Complete);
map.insert(String::from("hashmap1"), Complete);
map.insert(String::from("arc1"), Some);
map.insert(String::from("as_ref_mut"), None);
map.insert(String::from("from_str"), None);
map
}
fn get_vec_map() -> Vec<HashMap<String, Progress>> {
use Progress::*;
let map = get_map();
let mut other = HashMap::new();
other.insert(String::from("variables2"), Complete);
other.insert(String::from("functions2"), Complete);
other.insert(String::from("if1"), Complete);
other.insert(String::from("from_into"), None);
other.insert(String::from("try_from_into"), None);
vec![map, other]
}
#[test]
fn count_complete() {
let map = get_map();
assert_eq!(count_iterator(&map, Progress::Complete), 3);
}
#[test]
fn count_some() {
let map = get_map();
assert_eq!(count_iterator(&map, Progress::Some), 1);
}
#[test]
fn count_none() {
let map = get_map();
assert_eq!(count_iterator(&map, Progress::None), 2);
}
#[test]
fn count_complete_equals_for() {
let map = get_map();
let progress_states = [Progress::Complete, Progress::Some, Progress::None];
for progress_state in progress_states {
assert_eq!(
count_for(&map, progress_state),
count_iterator(&map, progress_state),
);
}
}
#[test]
fn count_collection_complete() {
let collection = get_vec_map();
assert_eq!(
count_collection_iterator(&collection, Progress::Complete),
6,
);
}
#[test]
fn count_collection_some() {
let collection = get_vec_map();
assert_eq!(count_collection_iterator(&collection, Progress::Some), 1);
}
#[test]
fn count_collection_none() {
let collection = get_vec_map();
assert_eq!(count_collection_iterator(&collection, Progress::None), 4);
}
#[test]
fn count_collection_equals_for() {
let collection = get_vec_map();
let progress_states = [Progress::Complete, Progress::Some, Progress::None];
for progress_state in progress_states {
assert_eq!(
count_collection_for(&collection, progress_state),
count_collection_iterator(&collection, progress_state),
);
}
}
}