mirror of
https://github.com/raylib-cs/raylib-cs
synced 2025-04-05 11:19:39 -04:00
84 lines
3.2 KiB
GLSL
84 lines
3.2 KiB
GLSL
#version 100
|
|
|
|
precision mediump float;
|
|
|
|
// Input vertex attributes (from vertex shader)
|
|
varying vec2 fragTexCoord;
|
|
varying vec4 fragColor;
|
|
|
|
uniform vec2 screenDims; // Dimensions of the screen
|
|
uniform vec2 c; // c.x = real, c.y = imaginary component. Equation done is z^2 + c
|
|
uniform vec2 offset; // Offset of the scale.
|
|
uniform float zoom; // Zoom of the scale.
|
|
|
|
// NOTE: Maximum number of shader for-loop iterations depend on GPU,
|
|
// for example, on RasperryPi for this examply only supports up to 60
|
|
const int MAX_ITERATIONS = 48; // Max iterations to do
|
|
|
|
// Square a complex number
|
|
vec2 ComplexSquare(vec2 z)
|
|
{
|
|
return vec2(
|
|
z.x * z.x - z.y * z.y,
|
|
z.x * z.y * 2.0
|
|
);
|
|
}
|
|
|
|
// Convert Hue Saturation Value (HSV) color into RGB
|
|
vec3 Hsv2rgb(vec3 c)
|
|
{
|
|
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
|
|
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
|
|
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
|
|
}
|
|
|
|
void main()
|
|
{
|
|
/**********************************************************************************************
|
|
Julia sets use a function z^2 + c, where c is a constant.
|
|
This function is iterated until the nature of the point is determined.
|
|
|
|
If the magnitude of the number becomes greater than 2, then from that point onward
|
|
the number will get bigger and bigger, and will never get smaller (tends towards infinity).
|
|
2^2 = 4, 4^2 = 8 and so on.
|
|
So at 2 we stop iterating.
|
|
|
|
If the number is below 2, we keep iterating.
|
|
But when do we stop iterating if the number is always below 2 (it converges)?
|
|
That is what MAX_ITERATIONS is for.
|
|
Then we can divide the iterations by the MAX_ITERATIONS value to get a normalized value that we can
|
|
then map to a color.
|
|
|
|
We use dot product (z.x * z.x + z.y * z.y) to determine the magnitude (length) squared.
|
|
And once the magnitude squared is > 4, then magnitude > 2 is also true (saves computational power).
|
|
*************************************************************************************************/
|
|
|
|
// The pixel coordinates are scaled so they are on the mandelbrot scale
|
|
// NOTE: fragTexCoord already comes as normalized screen coordinates but offset must be normalized before scaling and zoom
|
|
vec2 z = vec2((fragTexCoord.x + offset.x/screenDims.x)*2.5/zoom, (fragTexCoord.y + offset.y/screenDims.y)*1.5/zoom);
|
|
|
|
int iter = 0;
|
|
for (int iterations = 0; iterations < 60; iterations++)
|
|
{
|
|
z = ComplexSquare(z) + c; // Iterate function
|
|
if (dot(z, z) > 4.0) break;
|
|
|
|
iter = iterations;
|
|
}
|
|
|
|
// Another few iterations decreases errors in the smoothing calculation.
|
|
// See http://linas.org/art-gallery/escape/escape.html for more information.
|
|
z = ComplexSquare(z) + c;
|
|
z = ComplexSquare(z) + c;
|
|
|
|
// This last part smooths the color (again see link above).
|
|
float smoothVal = float(iter) + 1.0 - (log(log(length(z)))/log(2.0));
|
|
|
|
// Normalize the value so it is between 0 and 1.
|
|
float norm = smoothVal/float(MAX_ITERATIONS);
|
|
|
|
// If in set, color black. 0.999 allows for some float accuracy error.
|
|
if (norm > 0.999) gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
|
|
else gl_FragColor = vec4(Hsv2rgb(vec3(norm, 1.0, 1.0)), 1.0);
|
|
}
|