/********************************************************************************************** * * Raymath v1.2 bindings - Math functions to work with Vector3, Matrix and Quaternions * Original - https://github.com/raysan5/raylib/blob/master/src/raymath.h * **********************************************************************************************/ using System; using System.Runtime.InteropServices; namespace Raylib { #region Raylib-cs Types // Vector2 type public struct Vector2 { public float x; public float y; public Vector2(float x, float y) { this.x = x; this.y = y; } public Vector2(float value) { this.x = value; this.y = value; } public override bool Equals(object obj) { return (obj is Vector2) && Equals((Vector2)obj); } public override int GetHashCode() { return x.GetHashCode() + y.GetHashCode(); } public override string ToString() { return "Vector2(" + x + " " + y + ")"; } public static Vector2 Zero { get { return Raylib.Vector2Zero(); } } public static Vector2 One { get { return Raylib.Vector2One(); } } public static Vector2 UnitX { get { return new Vector2(1, 0); } } public static Vector2 UnitY { get { return new Vector2(0, 1); } } public static float Length(Vector2 v) { return Raylib.Vector2Length(v); } public static float DotProduct(Vector2 v1, Vector2 v2) { return Raylib.Vector2DotProduct(v1, v2); } public static float Distance(Vector2 v1, Vector2 v2) { return Raylib.Vector2Distance(v1, v2); } public static float Angle(Vector2 v1, Vector2 v2) { return Raylib.Vector2Angle(v1, v2); } public static Vector2 Scale(Vector2 v, float scale) { return Raylib.Vector2Scale(v, scale); } public static Vector2 Negate(Vector2 v) { return Raylib.Vector2Negate(v); } public static Vector2 Divide(Vector2 v, float div) { return Raylib.Vector2Divide(v, div); } public static Vector2 Normalize(Vector2 v) { return Raylib.Vector2Normalize(v); } #region Public Static Operators public static bool operator ==(Vector2 v1, Vector2 v2) { return (v1.x == v2.x && v1.y == v2.y); } public static bool operator !=(Vector2 v1, Vector2 v2) { return !(v1 == v2); } public static bool operator >(Vector2 v1, Vector2 v2) { return v1.x > v2.x && v1.y > v2.y; } public static bool operator <(Vector2 v1, Vector2 v2) { return v1.x < v2.x && v1.y < v2.y; } public static Vector2 operator +(Vector2 v1, Vector2 v2) { return Raylib.Vector2Add(v1, v2); } public static Vector2 operator -(Vector2 v1, Vector2 v2) { return Raylib.Vector2Subtract(v1, v2); } public static Vector2 operator *(Vector2 v1, Vector2 v2) { return Raylib.Vector2Multiplyv(v1, v2); } public static Vector2 operator *(Vector2 v, float scale) { return Raylib.Vector2Scale(v, scale); } public static Vector2 operator /(Vector2 v1, Vector2 v2) { return Raylib.Vector2DivideV(v1, v2); } public static Vector2 operator /(Vector2 v1, float div) { return Raylib.Vector2Divide(v1, div); } public static Vector2 operator -(Vector2 v1) { return Raylib.Vector2Negate(v1); } #endregion } // Vector3 type public struct Vector3 { public float x; public float y; public float z; public Vector3(float x, float y, float z) { this.x = x; this.y = y; this.z = z; } public Vector3(float value) { this.x = value; this.y = value; this.z = value; } // extensions public override bool Equals(object obj) { return (obj is Vector3) && Equals((Vector3)obj); } public override int GetHashCode() { return x.GetHashCode() + y.GetHashCode() + z.GetHashCode(); } public override string ToString() { return "Vector3(" + x + " " + y + " " + z + ")"; } public static Vector3 Zero { get { return Raylib.Vector3Zero(); } } public static Vector3 One { get { return Raylib.Vector3One(); } } public static Vector3 UnitX { get { return new Vector3(1, 0, 0); } } public static Vector3 UnitY { get { return new Vector3(0, 1, 0); } } public static Vector3 UnitZ { get { return new Vector3(0, 0, 1); } } #region Public Static Operators public static bool operator ==(Vector3 v1, Vector3 v2) { return (v1.x == v2.x && v1.y == v2.y && v1.z == v2.z); } public static bool operator !=(Vector3 v1, Vector3 v2) { return !(v1 == v2); } public static bool operator >(Vector3 v1, Vector3 v2) { return v1.x > v2.x && v1.y > v2.y && v1.z > v2.z; } public static bool operator <(Vector3 v1, Vector3 v2) { return v1.x < v2.x && v1.y < v2.y && v1.z < v2.z; } public static Vector3 operator +(Vector3 v1, Vector3 v2) { return Raylib.Vector3Add(v1, v2); } public static Vector3 operator -(Vector3 v1, Vector3 v2) { return Raylib.Vector3Subtract(v1, v2); } public static Vector3 operator *(Vector3 v1, Vector3 v2) { return Raylib.Vector3MultiplyV(v1, v2); } public static Vector3 operator *(Vector3 v, float scale) { return Raylib.Vector3Scale(v, scale); } public static Vector3 operator /(Vector3 v1, Vector3 v2) { return Raylib.Vector3DivideV(v1, v2); } public static Vector3 operator /(Vector3 v1, float div) { return Raylib.Vector3Divide(v1, div); } public static Vector3 operator -(Vector3 v1) { return Raylib.Vector3Negate(v1); } #endregion } // Vector4 type public struct Vector4 { public float x; public float y; public float z; public float w; public Vector4(float x, float y, float z, float w) { this.x = x; this.y = y; this.z = z; this.w = w; } public Vector4(float value) { this.x = value; this.y = value; this.z = value; this.w = value; } public override bool Equals(object obj) { return (obj is Vector4) && Equals((Vector4)obj); } public override int GetHashCode() { return x.GetHashCode() + y.GetHashCode() + z.GetHashCode() + w.GetHashCode(); } public override string ToString() { return "Vector4(" + x + " " + y + " " + z + " " + w + ")"; } } // Matrix type (OpenGL style 4x4 - right handed, column major) [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)] public struct Matrix { public float m0, m4, m8, m12; public float m1, m5, m9, m13; public float m2, m6, m10, m14; public float m3, m7, m11, m15; public override string ToString() { return $"Matrix({m0}, {m4}, {m8}, {m12}\n {m1}, {m5}, {m9}, {m13}\n {m2}, {m6}, {m10}, {m14}\n {m3}, {m7}, {m11}, {m15})"; } } // Quaternion type [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)] public struct Quaternion { public float x; public float y; public float z; public float w; public override string ToString() { return "Quaternion(" + x + " " + y + " " + z + " " + w + ")"; } } #endregion public static partial class Raylib { #region Raylib-cs Functions // Clamp float value [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern float Clamp(float value, float min, float max); // Vector with components value 0.0f [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector2 Vector2Zero(); // Vector with components value 1.0f [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector2 Vector2One(); // Add two vectors (v1 + v2) [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector2 Vector2Add(Vector2 v1, Vector2 v2); // Subtract two vectors (v1 - v2) [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector2 Vector2Subtract(Vector2 v1, Vector2 v2); // Calculate vector length [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern float Vector2Length(Vector2 v); // Calculate two vectors dot product [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern float Vector2DotProduct(Vector2 v1, Vector2 v2); // Calculate distance between two vectors [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern float Vector2Distance(Vector2 v1, Vector2 v2); // Calculate angle from two vectors in X-axis [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern float Vector2Angle(Vector2 v1, Vector2 v2); // Scale vector (multiply by value) [DllImport(nativeLibName, CallingConvention = CallingConvention.Cdecl)] public static extern Vector2 Vector2Scale(Vector2 v, float scale); // Multiply vector by a vector [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector2 Vector2Multiplyv(Vector2 v1, Vector2 v2); // Negate vector [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector2 Vector2Negate(Vector2 v); // Divide vector by a float value [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector2 Vector2Divide(Vector2 v, float div); // Divide vector by a vector [DllImport(nativeLibName, CallingConvention = CallingConvention.Cdecl)] public static extern Vector2 Vector2DivideV(Vector2 v1, Vector2 v2); // Normalize provided vector [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector2 Vector2Normalize(Vector2 v); // Vector with components value 0.0f [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3Zero(); // Vector with components value 1.0f [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3One(); // Add two vectors [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3Add(Vector3 v1, Vector3 v2); // Substract two vectors [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3Subtract(Vector3 v1, Vector3 v2); // Multiply vector by scalar [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3Multiply(Vector3 v, float scalar); // Multiply vector by vector [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3MultiplyV(Vector3 v1, Vector3 v2); // Calculate two vectors cross product [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2); // Calculate one vector perpendicular vector [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3Perpendicular(Vector3 v); // Calculate vector length [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern float Vector3Length(Vector3 v); // Calculate two vectors dot product [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern float Vector3DotProduct(Vector3 v1, Vector3 v2); // Calculate distance between two vectors [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern float Vector3Distance(Vector3 v1, Vector3 v2); // Scale provided vector [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3Scale(Vector3 v, float scale); // Negate provided vector (invert direction) [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3Negate(Vector3 v); // Divide vector by a float value [DllImport(nativeLibName, CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3Divide(Vector3 v, float div); // Divide vector by a vector [DllImport(nativeLibName, CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3DivideV(Vector3 v1, Vector3 v2); // Normalize provided vector [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3Normalize(Vector3 v); // Orthonormalize provided vectors // Makes vectors normalized and orthogonal to each other // Gram-Schmidt function implementation [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern void Vector3OrthoNormalize(out Vector3 v1, out Vector3 v2); // Transforms a Vector3 by a given Matrix [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3Transform(Vector3 v, Matrix mat); // Transform a vector by quaternion rotation [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q); // Calculate linear interpolation between two vectors [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount); // Calculate reflected vector to normal [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3Reflect(Vector3 v, Vector3 normal); // Return min value for each pair of components [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3Min(Vector3 v1, Vector3 v2); // Return max value for each pair of components [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3Max(Vector3 v1, Vector3 v2); // Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c) // NOTE: Assumes P is on the plane of the triangle [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c); // Returns Vector3 as float array [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern float[] Vector3ToFloatV(Vector3 v); // Compute matrix determinant [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern float MatrixDeterminant(Matrix mat); // Returns the trace of the matrix (sum of the values along the diagonal) [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern float MatrixTrace(Matrix mat); // Transposes provided matrix [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixTranspose(Matrix mat); // Invert provided matrix [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixInvert(Matrix mat); // Normalize provided matrix [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixNormalize(Matrix mat); // Returns identity matrix [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixIdentity(); // Add two matrices [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixAdd(Matrix left, Matrix right); // Substract two matrices (left - right) [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixSubstract(Matrix left, Matrix right); // Create rotation matrix from axis and angle // NOTE: Angle should be provided in radians [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixTranslate(float x, float y, float z); // Returns x-rotation matrix (angle in radians) [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixRotate(Vector3 axis, float angle); // Returns x-rotation matrix (angle in radians) [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixRotateX(float angle); // Returns y-rotation matrix (angle in radians) [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixRotateY(float angle); // Returns z-rotation matrix (angle in radians) [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixRotateZ(float angle); // Returns scaling matrix [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixScale(float x, float y, float z); // Returns two matrix multiplication // NOTE: When multiplying matrices... the order matters! [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixMultiply(Matrix left, Matrix right); // Returns perspective projection matrix [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far); // Returns perspective projection matrix // NOTE: Angle should be provided in radians [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixPerspective(double fovy, double aspect, double near, double far); // Returns orthographic projection matrix [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far); // Returns camera look-at matrix (view matrix) [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up); // Returns float array of matrix data [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern float[] MatrixToFloatV(Matrix mat); // Returns identity quaternion [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Quaternion QuaternionIdentity(); // Computes the length of a quaternion [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern float QuaternionLength(Quaternion q); // Normalize provided quaternion [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Quaternion QuaternionNormalize(Quaternion q); // Invert provided quaternion [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Quaternion QuaternionInvert(Quaternion q); // Calculate two quaternion multiplication [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2); // Calculate linear interpolation between two quaternions [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount); // Calculate slerp-optimized interpolation between two quaternions [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount); // Calculates spherical linear interpolation between two quaternions [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount); // Calculate quaternion based on the rotation from one vector to another [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to); // Returns a quaternion for a given rotation matrix [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Quaternion QuaternionFromMatrix(Matrix mat); // Returns a matrix for a given quaternion [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Matrix QuaternionToMatrix(Quaternion q); // Returns rotation quaternion for an angle and axis // NOTE: angle must be provided in radians [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle); // Returns the rotation angle and axis for a given quaternion [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern void QuaternionToAxisAngle(Quaternion q, out Vector3 outAxis, float[] outAngle); // Returns he quaternion equivalent to Euler angles [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Quaternion QuaternionFromEuler(float roll, float pitch, float yaw); // Return the Euler angles equivalent to quaternion (roll, pitch, yaw) // NOTE: Angles are returned in a Vector3 struct in degrees [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Vector3 QuaternionToEuler(Quaternion q); // Transform a quaternion given a transformation matrix [DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)] public static extern Quaternion QuaternionTransform(Quaternion q, Matrix mat); #endregion } }