/* Raylib-cs
* Raymath.cs - Core bindings to raymth
* Copyright 2019 Chris Dill
*
* Release under zLib License.
* See LICENSE for details.
*/
using System;
using System.Runtime.InteropServices;
namespace Raylib
{
// Vector2 type
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Vector2
{
public float x;
public float y;
}
// Vector3 type
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Vector3
{
public float x;
public float y;
public float z;
}
// Vector4 type
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public partial struct Vector4
{
public float x;
public float y;
public float z;
public float w;
}
// Matrix type (OpenGL style 4x4 - right handed, column major)
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public struct Matrix
{
public float m0, m4, m8, m12;
public float m1, m5, m9, m13;
public float m2, m6, m10, m14;
public float m3, m7, m11, m15;
public override string ToString()
{
return $"Matrix({m0}, {m4}, {m8}, {m12}\n {m1}, {m5}, {m9}, {m13}\n {m2}, {m6}, {m10}, {m14}\n {m3}, {m7}, {m11}, {m15})";
}
}
// Quaternion type
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
public struct Quaternion
{
public float x;
public float y;
public float z;
public float w;
public override string ToString()
{
return "Quaternion(" + x + " " + y + " " + z + " " + w + ")";
}
}
public static partial class Raylib
{
// Clamp float value
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern float Clamp(float value, float min, float max);
///
/// Linearly interpolates between two values.
///
/// Source value.
/// Source value.
///
/// Value between 0 and 1 indicating the weight of value2.
///
/// Interpolated value.
///
/// This method performs the linear interpolation based on the following formula.
/// value1 + (value2 - value1) * amount
/// Passing amount a value of 0 will cause value1 to be returned, a value of 1 will
/// cause value2 to be returned.
///
public static float Lerp(float value1, float value2, float amount)
{
return value1 + (value2 - value1) * amount;
}
// Vector with components value 0.0f
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector2 Vector2Zero();
// Vector with components value 1.0f
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector2 Vector2One();
// Add two vectors (v1 + v2)
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector2 Vector2Add(Vector2 v1, Vector2 v2);
// Subtract two vectors (v1 - v2)
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector2 Vector2Subtract(Vector2 v1, Vector2 v2);
// Calculate vector length
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern float Vector2Length(Vector2 v);
// Calculate two vectors dot product
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern float Vector2DotProduct(Vector2 v1, Vector2 v2);
// Calculate distance between two vectors
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern float Vector2Distance(Vector2 v1, Vector2 v2);
// Calculate angle from two vectors in X-axis
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern float Vector2Angle(Vector2 v1, Vector2 v2);
// Scale vector (multiply by value)
[DllImport(nativeLibName, CallingConvention = CallingConvention.Cdecl)]
public static extern Vector2 Vector2Scale(Vector2 v, float scale);
// Multiply vector by a vector
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector2 Vector2Multiplyv(Vector2 v1, Vector2 v2);
// Negate vector
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector2 Vector2Negate(Vector2 v);
// Divide vector by a float value
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector2 Vector2Divide(Vector2 v, float div);
// Divide vector by a vector
[DllImport(nativeLibName, CallingConvention = CallingConvention.Cdecl)]
public static extern Vector2 Vector2DivideV(Vector2 v1, Vector2 v2);
// Normalize provided vector
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector2 Vector2Normalize(Vector2 v);
// Vector with components value 0.0f
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3Zero();
// Vector with components value 1.0f
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3One();
// Add two vectors
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3Add(Vector3 v1, Vector3 v2);
// Substract two vectors
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3Subtract(Vector3 v1, Vector3 v2);
// Multiply vector by scalar
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3Multiply(Vector3 v, float scalar);
// Multiply vector by vector
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3MultiplyV(Vector3 v1, Vector3 v2);
// Calculate two vectors cross product
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2);
// Calculate one vector perpendicular vector
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3Perpendicular(Vector3 v);
// Calculate vector length
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern float Vector3Length(Vector3 v);
// Calculate two vectors dot product
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern float Vector3DotProduct(Vector3 v1, Vector3 v2);
// Calculate distance between two vectors
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern float Vector3Distance(Vector3 v1, Vector3 v2);
// Scale provided vector
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3Scale(Vector3 v, float scale);
// Negate provided vector (invert direction)
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3Negate(Vector3 v);
// Divide vector by a float value
[DllImport(nativeLibName, CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3Divide(Vector3 v, float div);
// Divide vector by a vector
[DllImport(nativeLibName, CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3DivideV(Vector3 v1, Vector3 v2);
// Normalize provided vector
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3Normalize(Vector3 v);
// Orthonormalize provided vectors
// Makes vectors normalized and orthogonal to each other
// Gram-Schmidt function implementation
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern void Vector3OrthoNormalize(out Vector3 v1, out Vector3 v2);
// Transforms a Vector3 by a given Matrix
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3Transform(Vector3 v, Matrix mat);
// Transform a vector by quaternion rotation
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q);
// Calculate linear interpolation between two vectors
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount);
// Calculate reflected vector to normal
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3Reflect(Vector3 v, Vector3 normal);
// Return min value for each pair of components
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3Min(Vector3 v1, Vector3 v2);
// Return max value for each pair of components
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3Max(Vector3 v1, Vector3 v2);
// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
// NOTE: Assumes P is on the plane of the triangle
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c);
// Returns Vector3 as float array
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern float[] Vector3ToFloatV(Vector3 v);
// Compute matrix determinant
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern float MatrixDeterminant(Matrix mat);
// Returns the trace of the matrix (sum of the values along the diagonal)
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern float MatrixTrace(Matrix mat);
// Transposes provided matrix
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixTranspose(Matrix mat);
// Invert provided matrix
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixInvert(Matrix mat);
// Normalize provided matrix
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixNormalize(Matrix mat);
// Returns identity matrix
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixIdentity();
// Add two matrices
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixAdd(Matrix left, Matrix right);
// Substract two matrices (left - right)
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixSubstract(Matrix left, Matrix right);
// Create rotation matrix from axis and angle
// NOTE: Angle should be provided in radians
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixTranslate(float x, float y, float z);
// Returns x-rotation matrix (angle in radians)
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixRotate(Vector3 axis, float angle);
// Returns x-rotation matrix (angle in radians)
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixRotateX(float angle);
// Returns y-rotation matrix (angle in radians)
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixRotateY(float angle);
// Returns z-rotation matrix (angle in radians)
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixRotateZ(float angle);
// Returns scaling matrix
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixScale(float x, float y, float z);
// Returns two matrix multiplication
// NOTE: When multiplying matrices... the order matters!
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixMultiply(Matrix left, Matrix right);
// Returns perspective projection matrix
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far);
// Returns perspective projection matrix
// NOTE: Angle should be provided in radians
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixPerspective(double fovy, double aspect, double near, double far);
// Returns orthographic projection matrix
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far);
// Returns camera look-at matrix (view matrix)
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up);
// Returns float array of matrix data
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern float[] MatrixToFloatV(Matrix mat);
// Returns identity quaternion
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Quaternion QuaternionIdentity();
// Computes the length of a quaternion
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern float QuaternionLength(Quaternion q);
// Normalize provided quaternion
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Quaternion QuaternionNormalize(Quaternion q);
// Invert provided quaternion
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Quaternion QuaternionInvert(Quaternion q);
// Calculate two quaternion multiplication
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2);
// Calculate linear interpolation between two quaternions
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount);
// Calculate slerp-optimized interpolation between two quaternions
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount);
// Calculates spherical linear interpolation between two quaternions
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount);
// Calculate quaternion based on the rotation from one vector to another
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to);
// Returns a quaternion for a given rotation matrix
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Quaternion QuaternionFromMatrix(Matrix mat);
// Returns a matrix for a given quaternion
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Matrix QuaternionToMatrix(Quaternion q);
// Returns rotation quaternion for an angle and axis
// NOTE: angle must be provided in radians
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle);
// Returns the rotation angle and axis for a given quaternion
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern void QuaternionToAxisAngle(Quaternion q, out Vector3 outAxis, float[] outAngle);
// Returns he quaternion equivalent to Euler angles
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Quaternion QuaternionFromEuler(float roll, float pitch, float yaw);
// Return the Euler angles equivalent to quaternion (roll, pitch, yaw)
// NOTE: Angles are returned in a Vector3 struct in degrees
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Vector3 QuaternionToEuler(Quaternion q);
// Transform a quaternion given a transformation matrix
[DllImport(nativeLibName,CallingConvention = CallingConvention.Cdecl)]
public static extern Quaternion QuaternionTransform(Quaternion q, Matrix mat);
}
}