2
0
mirror of https://github.com/raylib-cs/raylib-cs synced 2025-06-30 19:03:42 -04:00

Update/merge examples back into main repo (#192)

This commit is contained in:
2023-08-25 08:08:32 +01:00
committed by GitHub
parent fa682b00ac
commit bcdf8cec5b
320 changed files with 57965 additions and 1 deletions

View File

@ -0,0 +1,20 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
void main()
{
vec4 texelColor = texture2D(texture0, fragTexCoord);
if (texelColor.a == 0.0) discard;
gl_FragColor = texelColor*fragColor*colDiffuse;
}

View File

@ -0,0 +1,23 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor = texture2D(texture0, fragTexCoord);
// NOTE: Implement here your fragment shader code
gl_FragColor = texelColor*colDiffuse;
}

View File

@ -0,0 +1,26 @@
#version 100
// Input vertex attributes
attribute vec3 vertexPosition;
attribute vec2 vertexTexCoord;
attribute vec3 vertexNormal;
attribute vec4 vertexColor;
// Input uniform values
uniform mat4 mvp;
// Output vertex attributes (to fragment shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// NOTE: Add here your custom variables
void main()
{
// Send vertex attributes to fragment shader
fragTexCoord = vertexTexCoord;
fragColor = vertexColor;
// Calculate final vertex position
gl_Position = mvp*vec4(vertexPosition, 1.0);
}

View File

@ -0,0 +1,39 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
const vec2 size = vec2(800, 450); // render size
const float samples = 5.0; // pixels per axis; higher = bigger glow, worse performance
const float quality = 2.5; // lower = smaller glow, better quality
void main()
{
vec4 sum = vec4(0);
vec2 sizeFactor = vec2(1)/size*quality;
// Texel color fetching from texture sampler
vec4 source = texture2D(texture0, fragTexCoord);
const int range = 2; // should be = (samples - 1)/2;
for (int x = -range; x <= range; x++)
{
for (int y = -range; y <= range; y++)
{
sum += texture2D(texture0, fragTexCoord + vec2(x, y)*sizeFactor);
}
}
// Calculate final fragment color
gl_FragColor = ((sum/(samples*samples)) + source)*colDiffuse;
}

View File

@ -0,0 +1,34 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
// NOTE: Render size values must be passed from code
const float renderWidth = 800.0;
const float renderHeight = 450.0;
vec3 offset = vec3(0.0, 1.3846153846, 3.2307692308);
vec3 weight = vec3(0.2270270270, 0.3162162162, 0.0702702703);
void main()
{
// Texel color fetching from texture sampler
vec3 tc = texture2D(texture0, fragTexCoord).rgb*weight.x;
tc += texture2D(texture0, fragTexCoord + vec2(offset.y)/renderWidth, 0.0).rgb*weight.y;
tc += texture2D(texture0, fragTexCoord - vec2(offset.y)/renderWidth, 0.0).rgb*weight.y;
tc += texture2D(texture0, fragTexCoord + vec2(offset.z)/renderWidth, 0.0).rgb*weight.z;
tc += texture2D(texture0, fragTexCoord - vec2(offset.z)/renderWidth, 0.0).rgb*weight.z;
gl_FragColor = vec4(tc, 1.0);
}

View File

@ -0,0 +1,26 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform sampler2D texture1;
uniform vec4 colDiffuse;
uniform float divider;
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor0 = texture2D(texture0, fragTexCoord);
vec4 texelColor1 = texture2D(texture1, fragTexCoord);
float x = fract(fragTexCoord.s);
float final = smoothstep(divider - 0.1, divider + 0.1, x);
gl_FragColor = mix(texelColor0, texelColor1, final);
}

View File

@ -0,0 +1,47 @@
# version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
float hatchOffsetY = 5.0;
float lumThreshold01 = 0.9;
float lumThreshold02 = 0.7;
float lumThreshold03 = 0.5;
float lumThreshold04 = 0.3;
void main()
{
vec3 tc = vec3(1.0, 1.0, 1.0);
float lum = length(texture2D(texture0, fragTexCoord).rgb);
if (lum < lumThreshold01)
{
if (mod(gl_FragCoord.x + gl_FragCoord.y, 10.0) == 0.0) tc = vec3(0.0, 0.0, 0.0);
}
if (lum < lumThreshold02)
{
if (mod(gl_FragCoord .x - gl_FragCoord .y, 10.0) == 0.0) tc = vec3(0.0, 0.0, 0.0);
}
if (lum < lumThreshold03)
{
if (mod(gl_FragCoord .x + gl_FragCoord .y - hatchOffsetY, 10.0) == 0.0) tc = vec3(0.0, 0.0, 0.0);
}
if (lum < lumThreshold04)
{
if (mod(gl_FragCoord .x - gl_FragCoord .y - hatchOffsetY, 10.0) == 0.0) tc = vec3(0.0, 0.0, 0.0);
}
gl_FragColor = vec4(tc, 1.0);
}

View File

@ -0,0 +1,57 @@
# version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
// NOTE: Render size values must be passed from code
const float renderWidth = 800.0;
const float renderHeight = 450.0;
float stitchingSize = 6.0;
int invert = 0;
vec4 PostFX(sampler2D tex, vec2 uv)
{
vec4 c = vec4(0.0);
float size = stitchingSize;
vec2 cPos = uv * vec2(renderWidth, renderHeight);
vec2 tlPos = floor(cPos / vec2(size, size));
tlPos *= size;
int remX = int(mod(cPos.x, size));
int remY = int(mod(cPos.y, size));
if (remX == 0 && remY == 0) tlPos = cPos;
vec2 blPos = tlPos;
blPos.y += (size - 1.0);
if ((remX == remY) || (((int(cPos.x) - int(blPos.x)) == (int(blPos.y) - int(cPos.y)))))
{
if (invert == 1) c = vec4(0.2, 0.15, 0.05, 1.0);
else c = texture2D(tex, tlPos * vec2(1.0/renderWidth, 1.0/renderHeight)) * 1.4;
}
else
{
if (invert == 1) c = texture2D(tex, tlPos * vec2(1.0/renderWidth, 1.0/renderHeight)) * 1.4;
else c = vec4(0.0, 0.0, 0.0, 1.0);
}
return c;
}
void main()
{
vec3 tc = PostFX(texture0, fragTexCoord).rgb;
gl_FragColor = vec4(tc, 1.0);
}

View File

@ -0,0 +1,29 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec3 fragPosition;
// Input uniform values
uniform sampler2D equirectangularMap;
vec2 SampleSphericalMap(vec3 v)
{
vec2 uv = vec2(atan(v.z, v.x), asin(v.y));
uv *= vec2(0.1591, 0.3183);
uv += 0.5;
return uv;
}
void main()
{
// Normalize local position
vec2 uv = SampleSphericalMap(normalize(fragPosition));
// Fetch color from texture map
vec3 color = texture2D(equirectangularMap, uv).rgb;
// Calculate final fragment color
gl_FragColor = vec4(color, 1.0);
}

View File

@ -0,0 +1,20 @@
#version 100
// Input vertex attributes
attribute vec3 vertexPosition;
// Input uniform values
uniform mat4 matProjection;
uniform mat4 matView;
// Output vertex attributes (to fragment shader)
varying vec3 fragPosition;
void main()
{
// Calculate fragment position based on model transformations
fragPosition = vertexPosition;
// Calculate final vertex position
gl_Position = matProjection*matView*vec4(vertexPosition, 1.0);
}

View File

@ -0,0 +1,60 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Custom variables
const float PI = 3.14159265358979323846;
uniform float uTime;
float divisions = 5.0;
float angle = 0.0;
vec2 VectorRotateTime(vec2 v, float speed)
{
float time = uTime*speed;
float localTime = fract(time); // The time domain this works on is 1 sec.
if ((localTime >= 0.0) && (localTime < 0.25)) angle = 0.0;
else if ((localTime >= 0.25) && (localTime < 0.50)) angle = PI/4.0*sin(2.0*PI*localTime - PI/2.0);
else if ((localTime >= 0.50) && (localTime < 0.75)) angle = PI*0.25;
else if ((localTime >= 0.75) && (localTime < 1.00)) angle = PI/4.0*sin(2.0*PI*localTime);
// Rotate vector by angle
v -= 0.5;
v = mat2(cos(angle), -sin(angle), sin(angle), cos(angle))*v;
v += 0.5;
return v;
}
float Rectangle(in vec2 st, in float size, in float fill)
{
float roundSize = 0.5 - size/2.0;
float left = step(roundSize, st.x);
float top = step(roundSize, st.y);
float bottom = step(roundSize, 1.0 - st.y);
float right = step(roundSize, 1.0 - st.x);
return (left*bottom*right*top)*fill;
}
void main()
{
vec2 fragPos = fragTexCoord;
fragPos.xy += uTime/9.0;
fragPos *= divisions;
vec2 ipos = floor(fragPos); // Get the integer coords
vec2 fpos = fract(fragPos); // Get the fractional coords
fpos = VectorRotateTime(fpos, 0.2);
float alpha = Rectangle(fpos, 0.216, 1.0);
vec3 color = vec3(0.3, 0.3, 0.3);
gl_FragColor = vec4(color, alpha);
}

View File

@ -0,0 +1,26 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0; // Depth texture
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
void main()
{
float zNear = 0.01; // camera z near
float zFar = 10.0; // camera z far
float z = texture2D(texture0, fragTexCoord).x;
// Linearize depth value
float depth = (2.0*zNear)/(zFar + zNear - z*(zFar - zNear));
// Calculate final fragment color
gl_FragColor = vec4(depth, depth, depth, 1.0f);
}

View File

@ -0,0 +1,54 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
// Input uniform values
uniform sampler2D texture0;
// NOTE: Default parameters for Oculus Rift DK2 device
const vec2 LeftLensCenter = vec2(0.2863248, 0.5);
const vec2 RightLensCenter = vec2(0.7136753, 0.5);
const vec2 LeftScreenCenter = vec2(0.25, 0.5);
const vec2 RightScreenCenter = vec2(0.75, 0.5);
const vec2 Scale = vec2(0.25, 0.45);
const vec2 ScaleIn = vec2(4.0, 2.5);
const vec4 HmdWarpParam = vec4(1.0, 0.22, 0.24, 0.0);
const vec4 ChromaAbParam = vec4(0.996, -0.004, 1.014, 0.0);
void main()
{
// The following two variables need to be set per eye
vec2 LensCenter = fragTexCoord.x < 0.5 ? LeftLensCenter : RightLensCenter;
vec2 ScreenCenter = fragTexCoord.x < 0.5 ? LeftScreenCenter : RightScreenCenter;
// Scales input texture coordinates for distortion: vec2 HmdWarp(vec2 fragTexCoord, vec2 LensCenter)
vec2 theta = (fragTexCoord - LensCenter)*ScaleIn; // Scales to [-1, 1]
float rSq = theta.x*theta.x + theta.y*theta.y;
vec2 theta1 = theta*(HmdWarpParam.x + HmdWarpParam.y*rSq + HmdWarpParam.z*rSq*rSq + HmdWarpParam.w*rSq*rSq*rSq);
//vec2 tc = LensCenter + Scale*theta1;
// Detect whether blue texture coordinates are out of range since these will scaled out the furthest
vec2 thetaBlue = theta1*(ChromaAbParam.z + ChromaAbParam.w*rSq);
vec2 tcBlue = LensCenter + Scale*thetaBlue;
if (any(bvec2(clamp(tcBlue, ScreenCenter - vec2(0.25, 0.5), ScreenCenter + vec2(0.25, 0.5)) - tcBlue))) gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
else
{
// Do blue texture lookup
float blue = texture2D(texture0, tcBlue).b;
// Do green lookup (no scaling)
vec2 tcGreen = LensCenter + Scale*theta1;
float green = texture2D(texture0, tcGreen).g;
// Do red scale and lookup
vec2 thetaRed = theta1*(ChromaAbParam.x + ChromaAbParam.y*rSq);
vec2 tcRed = LensCenter + Scale*thetaRed;
float red = texture2D(texture0, tcRed).r;
gl_FragColor = vec4(red, green, blue, 1.0);
}
}

View File

@ -0,0 +1,52 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
uniform vec2 leftLensCenter;
uniform vec2 rightLensCenter;
uniform vec2 leftScreenCenter;
uniform vec2 rightScreenCenter;
uniform vec2 scale;
uniform vec2 scaleIn;
uniform vec4 deviceWarpParam;
uniform vec4 chromaAbParam;
void main()
{
// Compute lens distortion
vec2 lensCenter = fragTexCoord.x < 0.5? leftLensCenter : rightLensCenter;
vec2 screenCenter = fragTexCoord.x < 0.5? leftScreenCenter : rightScreenCenter;
vec2 theta = (fragTexCoord - lensCenter)*scaleIn;
float rSq = theta.x*theta.x + theta.y*theta.y;
vec2 theta1 = theta*(deviceWarpParam.x + deviceWarpParam.y*rSq + deviceWarpParam.z*rSq*rSq + deviceWarpParam.w*rSq*rSq*rSq);
vec2 thetaBlue = theta1*(chromaAbParam.z + chromaAbParam.w*rSq);
vec2 tcBlue = lensCenter + scale*thetaBlue;
if (any(bvec2(clamp(tcBlue, screenCenter - vec2(0.25, 0.5), screenCenter + vec2(0.25, 0.5)) - tcBlue)))
{
// Set black fragment for everything outside the lens border
gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
}
else
{
// Compute color chroma aberration
float blue = texture2D(texture0, tcBlue).b;
vec2 tcGreen = lensCenter + scale*theta1;
float green = texture2D(texture0, tcGreen).g;
vec2 thetaRed = theta1*(chromaAbParam.x + chromaAbParam.y*rSq);
vec2 tcRed = lensCenter + scale*thetaRed;
float red = texture2D(texture0, tcRed).r;
gl_FragColor = vec4(red, green, blue, 1.0);
}
}

View File

@ -0,0 +1,37 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
void main()
{
vec4 color = texture2D(texture0, fragTexCoord);
color += texture2D(texture0, fragTexCoord + 0.001);
color += texture2D(texture0, fragTexCoord + 0.003);
color += texture2D(texture0, fragTexCoord + 0.005);
color += texture2D(texture0, fragTexCoord + 0.007);
color += texture2D(texture0, fragTexCoord + 0.009);
color += texture2D(texture0, fragTexCoord + 0.011);
color += texture2D(texture0, fragTexCoord - 0.001);
color += texture2D(texture0, fragTexCoord - 0.003);
color += texture2D(texture0, fragTexCoord - 0.005);
color += texture2D(texture0, fragTexCoord - 0.007);
color += texture2D(texture0, fragTexCoord - 0.009);
color += texture2D(texture0, fragTexCoord - 0.011);
color.rgb = vec3((color.r + color.g + color.b)/3.0);
color = color/9.5;
gl_FragColor = color;
}

View File

@ -0,0 +1,60 @@
#version 100
precision mediump float;
/*************************************************************************************
The Sieve of Eratosthenes -- a simple shader by ProfJski
An early prime number sieve: https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
The screen is divided into a square grid of boxes, each representing an integer value.
Each integer is tested to see if it is a prime number. Primes are colored white.
Non-primes are colored with a color that indicates the smallest factor which evenly divdes our integer.
You can change the scale variable to make a larger or smaller grid.
Total number of integers displayed = scale squared, so scale = 100 tests the first 10,000 integers.
WARNING: If you make scale too large, your GPU may bog down!
***************************************************************************************/
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Make a nice spectrum of colors based on counter and maxSize
vec4 Colorizer(float counter, float maxSize)
{
float red = 0.0, green = 0.0, blue = 0.0;
float normsize = counter/maxSize;
red = smoothstep(0.3, 0.7, normsize);
green = sin(3.14159*normsize);
blue = 1.0 - smoothstep(0.0, 0.4, normsize);
return vec4(0.8*red, 0.8*green, 0.8*blue, 1.0);
}
void main()
{
vec4 color = vec4(1.0);
float scale = 1000.0; // Makes 100x100 square grid. Change this variable to make a smaller or larger grid.
float value = scale*floor(fragTexCoord.y*scale) + floor(fragTexCoord.x*scale); // Group pixels into boxes representing integer values
int valuei = int(value);
//if ((valuei == 0) || (valuei == 1) || (valuei == 2)) gl_FragColor = vec4(1.0);
//else
{
//for (int i = 2; (i < int(max(2.0, sqrt(value) + 1.0))); i++)
// NOTE: On GLSL 100 for loops are restricted and loop condition must be a constant
// Tested on RPI, it seems loops are limited around 60 iteractions
for (int i = 2; i < 48; i++)
{
if ((value - float(i)*floor(value/float(i))) <= 0.0)
{
gl_FragColor = Colorizer(float(i), scale);
//break; // Uncomment to color by the largest factor instead
}
}
}
}

View File

@ -0,0 +1,43 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
const float PI = 3.1415926535;
void main()
{
float aperture = 178.0;
float apertureHalf = 0.5 * aperture * (PI / 180.0);
float maxFactor = sin(apertureHalf);
vec2 uv = vec2(0.0);
vec2 xy = 2.0 * fragTexCoord.xy - 1.0;
float d = length(xy);
if (d < (2.0 - maxFactor))
{
d = length(xy * maxFactor);
float z = sqrt(1.0 - d * d);
float r = atan(d, z) / PI;
float phi = atan(xy.y, xy.x);
uv.x = r * cos(phi) + 0.5;
uv.y = r * sin(phi) + 0.5;
}
else
{
uv = fragTexCoord.xy;
}
gl_FragColor = texture2D(texture0, uv);
}

View File

@ -0,0 +1,94 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec3 fragPosition;
varying vec2 fragTexCoord;
varying vec4 fragColor;
varying vec3 fragNormal;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
#define MAX_LIGHTS 4
#define LIGHT_DIRECTIONAL 0
#define LIGHT_POINT 1
struct MaterialProperty {
vec3 color;
int useSampler;
sampler2D sampler;
};
struct Light {
int enabled;
int type;
vec3 position;
vec3 target;
vec4 color;
};
// Input lighting values
uniform Light lights[MAX_LIGHTS];
uniform vec4 ambient;
uniform vec3 viewPos;
uniform float fogDensity;
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor = texture2D(texture0, fragTexCoord);
vec3 lightDot = vec3(0.0);
vec3 normal = normalize(fragNormal);
vec3 viewD = normalize(viewPos - fragPosition);
vec3 specular = vec3(0.0);
// NOTE: Implement here your fragment shader code
for (int i = 0; i < MAX_LIGHTS; i++)
{
if (lights[i].enabled == 1)
{
vec3 light = vec3(0.0);
if (lights[i].type == LIGHT_DIRECTIONAL) light = -normalize(lights[i].target - lights[i].position);
if (lights[i].type == LIGHT_POINT) light = normalize(lights[i].position - fragPosition);
float NdotL = max(dot(normal, light), 0.0);
lightDot += lights[i].color.rgb*NdotL;
float specCo = 0.0;
if (NdotL > 0.0) specCo = pow(max(0.0, dot(viewD, reflect(-(light), normal))), 16.0); // Shine: 16.0
specular += specCo;
}
}
vec4 finalColor = (texelColor*((colDiffuse + vec4(specular,1))*vec4(lightDot, 1.0)));
finalColor += texelColor*(ambient/10.0);
// Gamma correction
finalColor = pow(finalColor, vec4(1.0/2.2));
// Fog calculation
float dist = length(viewPos - fragPosition);
// these could be parameters...
const vec4 fogColor = vec4(0.5, 0.5, 0.5, 1.0);
//const float fogDensity = 0.16;
// Exponential fog
float fogFactor = 1.0/exp((dist*fogDensity)*(dist*fogDensity));
// Linear fog (less nice)
//const float fogStart = 2.0;
//const float fogEnd = 10.0;
//float fogFactor = (fogEnd - dist)/(fogEnd - fogStart);
fogFactor = clamp(fogFactor, 0.0, 1.0);
gl_FragColor = mix(fogColor, finalColor, fogFactor);
}

View File

@ -0,0 +1,25 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor = texture2D(texture0, fragTexCoord)*colDiffuse*fragColor;
// Convert texel color to grayscale using NTSC conversion weights
float gray = dot(texelColor.rgb, vec3(0.299, 0.587, 0.114));
// Calculate final fragment color
gl_FragColor = vec4(gray, gray, gray, texelColor.a);
}

View File

@ -0,0 +1,16 @@
#version 100
#extension GL_EXT_frag_depth : enable // Extension required for writing depth
precision mediump float; // Precision required for OpenGL ES2 (WebGL)
varying vec2 fragTexCoord;
varying vec4 fragColor;
uniform sampler2D texture0;
uniform vec4 colDiffuse;
void main()
{
vec4 texelColor = texture2D(texture0, fragTexCoord);
gl_FragColor = texelColor*colDiffuse*fragColor;
gl_FragDepthEXT = gl_FragCoord.z;
}

View File

@ -0,0 +1,288 @@
#version 100
#extension GL_EXT_frag_depth : enable //Extension required for writing depth
#extension GL_OES_standard_derivatives : enable //Extension used for fwidth()
precision mediump float; // Precision required for OpenGL ES2 (WebGL)
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Custom Input Uniform
uniform vec3 camPos;
uniform vec3 camDir;
uniform vec2 screenCenter;
#define ZERO 0
// https://learnopengl.com/Advanced-OpenGL/Depth-testing
float CalcDepth(in vec3 rd, in float Idist){
float local_z = dot(normalize(camDir),rd)*Idist;
return (1.0/(local_z) - 1.0/0.01)/(1.0/1000.0 -1.0/0.01);
}
// https://iquilezles.org/articles/distfunctions/
float sdHorseshoe( in vec3 p, in vec2 c, in float r, in float le, vec2 w )
{
p.x = abs(p.x);
float l = length(p.xy);
p.xy = mat2(-c.x, c.y,
c.y, c.x)*p.xy;
p.xy = vec2((p.y>0.0 || p.x>0.0)?p.x:l*sign(-c.x),
(p.x>0.0)?p.y:l );
p.xy = vec2(p.x,abs(p.y-r))-vec2(le,0.0);
vec2 q = vec2(length(max(p.xy,0.0)) + min(0.0,max(p.x,p.y)),p.z);
vec2 d = abs(q) - w;
return min(max(d.x,d.y),0.0) + length(max(d,0.0));
}
// r = sphere's radius
// h = cutting's plane's position
// t = thickness
float sdSixWayCutHollowSphere( vec3 p, float r, float h, float t )
{
// Six way symetry Transformation
vec3 ap = abs(p);
if(ap.x < max(ap.y, ap.z)){
if(ap.y < ap.z) ap.xz = ap.zx;
else ap.xy = ap.yx;
}
vec2 q = vec2( length(ap.yz), ap.x );
float w = sqrt(r*r-h*h);
return ((h*q.x<w*q.y) ? length(q-vec2(w,h)) :
abs(length(q)-r) ) - t;
}
// https://iquilezles.org/articles/boxfunctions
vec2 iBox( in vec3 ro, in vec3 rd, in vec3 rad )
{
vec3 m = 1.0/rd;
vec3 n = m*ro;
vec3 k = abs(m)*rad;
vec3 t1 = -n - k;
vec3 t2 = -n + k;
return vec2( max( max( t1.x, t1.y ), t1.z ),
min( min( t2.x, t2.y ), t2.z ) );
}
vec2 opU( vec2 d1, vec2 d2 )
{
return (d1.x<d2.x) ? d1 : d2;
}
vec2 map( in vec3 pos ){
vec2 res = vec2( sdHorseshoe( pos-vec3(-1.0,0.08, 1.0), vec2(cos(1.3),sin(1.3)), 0.2, 0.3, vec2(0.03,0.5) ), 11.5 ) ;
res = opU(res, vec2( sdSixWayCutHollowSphere( pos-vec3(0.0, 1.0, 0.0), 4.0, 3.5, 0.5 ), 4.5 )) ;
return res;
}
// https://www.shadertoy.com/view/Xds3zN
vec2 raycast( in vec3 ro, in vec3 rd ){
vec2 res = vec2(-1.0,-1.0);
float tmin = 1.0;
float tmax = 20.0;
// raytrace floor plane
float tp1 = (-ro.y)/rd.y;
if( tp1>0.0 )
{
tmax = min( tmax, tp1 );
res = vec2( tp1, 1.0 );
}
float t = tmin;
for( int i=0; i<70 ; i++ )
{
if(t>tmax) break;
vec2 h = map( ro+rd*t );
if( abs(h.x)<(0.0001*t) )
{
res = vec2(t,h.y);
break;
}
t += h.x;
}
return res;
}
// https://iquilezles.org/articles/rmshadows
float calcSoftshadow( in vec3 ro, in vec3 rd, in float mint, in float tmax )
{
// bounding volume
float tp = (0.8-ro.y)/rd.y; if( tp>0.0 ) tmax = min( tmax, tp );
float res = 1.0;
float t = mint;
for( int i=ZERO; i<24; i++ )
{
float h = map( ro + rd*t ).x;
float s = clamp(8.0*h/t,0.0,1.0);
res = min( res, s );
t += clamp( h, 0.01, 0.2 );
if( res<0.004 || t>tmax ) break;
}
res = clamp( res, 0.0, 1.0 );
return res*res*(3.0-2.0*res);
}
// https://iquilezles.org/articles/normalsSDF
vec3 calcNormal( in vec3 pos )
{
vec2 e = vec2(1.0,-1.0)*0.5773*0.0005;
return normalize( e.xyy*map( pos + e.xyy ).x +
e.yyx*map( pos + e.yyx ).x +
e.yxy*map( pos + e.yxy ).x +
e.xxx*map( pos + e.xxx ).x );
}
// https://iquilezles.org/articles/nvscene2008/rwwtt.pdf
float calcAO( in vec3 pos, in vec3 nor )
{
float occ = 0.0;
float sca = 1.0;
for( int i=ZERO; i<5; i++ )
{
float h = 0.01 + 0.12*float(i)/4.0;
float d = map( pos + h*nor ).x;
occ += (h-d)*sca;
sca *= 0.95;
if( occ>0.35 ) break;
}
return clamp( 1.0 - 3.0*occ, 0.0, 1.0 ) * (0.5+0.5*nor.y);
}
// https://iquilezles.org/articles/checkerfiltering
float checkersGradBox( in vec2 p )
{
// filter kernel
vec2 w = fwidth(p) + 0.001;
// analytical integral (box filter)
vec2 i = 2.0*(abs(fract((p-0.5*w)*0.5)-0.5)-abs(fract((p+0.5*w)*0.5)-0.5))/w;
// xor pattern
return 0.5 - 0.5*i.x*i.y;
}
// https://www.shadertoy.com/view/tdS3DG
vec4 render( in vec3 ro, in vec3 rd)
{
// background
vec3 col = vec3(0.7, 0.7, 0.9) - max(rd.y,0.0)*0.3;
// raycast scene
vec2 res = raycast(ro,rd);
float t = res.x;
float m = res.y;
if( m>-0.5 )
{
vec3 pos = ro + t*rd;
vec3 nor = (m<1.5) ? vec3(0.0,1.0,0.0) : calcNormal( pos );
vec3 ref = reflect( rd, nor );
// material
col = 0.2 + 0.2*sin( m*2.0 + vec3(0.0,1.0,2.0) );
float ks = 1.0;
if( m<1.5 )
{
float f = checkersGradBox( 3.0*pos.xz);
col = 0.15 + f*vec3(0.05);
ks = 0.4;
}
// lighting
float occ = calcAO( pos, nor );
vec3 lin = vec3(0.0);
// sun
{
vec3 lig = normalize( vec3(-0.5, 0.4, -0.6) );
vec3 hal = normalize( lig-rd );
float dif = clamp( dot( nor, lig ), 0.0, 1.0 );
//if( dif>0.0001 )
dif *= calcSoftshadow( pos, lig, 0.02, 2.5 );
float spe = pow( clamp( dot( nor, hal ), 0.0, 1.0 ),16.0);
spe *= dif;
spe *= 0.04+0.96*pow(clamp(1.0-dot(hal,lig),0.0,1.0),5.0);
//spe *= 0.04+0.96*pow(clamp(1.0-sqrt(0.5*(1.0-dot(rd,lig))),0.0,1.0),5.0);
lin += col*2.20*dif*vec3(1.30,1.00,0.70);
lin += 5.00*spe*vec3(1.30,1.00,0.70)*ks;
}
// sky
{
float dif = sqrt(clamp( 0.5+0.5*nor.y, 0.0, 1.0 ));
dif *= occ;
float spe = smoothstep( -0.2, 0.2, ref.y );
spe *= dif;
spe *= 0.04+0.96*pow(clamp(1.0+dot(nor,rd),0.0,1.0), 5.0 );
//if( spe>0.001 )
spe *= calcSoftshadow( pos, ref, 0.02, 2.5 );
lin += col*0.60*dif*vec3(0.40,0.60,1.15);
lin += 2.00*spe*vec3(0.40,0.60,1.30)*ks;
}
// back
{
float dif = clamp( dot( nor, normalize(vec3(0.5,0.0,0.6))), 0.0, 1.0 )*clamp( 1.0-pos.y,0.0,1.0);
dif *= occ;
lin += col*0.55*dif*vec3(0.25,0.25,0.25);
}
// sss
{
float dif = pow(clamp(1.0+dot(nor,rd),0.0,1.0),2.0);
dif *= occ;
lin += col*0.25*dif*vec3(1.00,1.00,1.00);
}
col = lin;
col = mix( col, vec3(0.7,0.7,0.9), 1.0-exp( -0.0001*t*t*t ) );
}
return vec4(vec3( clamp(col,0.0,1.0) ),t);
}
vec3 CalcRayDir(vec2 nCoord){
vec3 horizontal = normalize(cross(camDir,vec3(.0 , 1.0, .0)));
vec3 vertical = normalize(cross(horizontal,camDir));
return normalize(camDir + horizontal*nCoord.x + vertical*nCoord.y);
}
mat3 setCamera()
{
vec3 cw = normalize(camDir);
vec3 cp = vec3(0.0, 1.0 ,0.0);
vec3 cu = normalize( cross(cw,cp) );
vec3 cv = ( cross(cu,cw) );
return mat3( cu, cv, cw );
}
void main()
{
vec2 nCoord = (gl_FragCoord.xy - screenCenter.xy)/screenCenter.y;
mat3 ca = setCamera();
// focal length
float fl = length(camDir);
vec3 rd = ca * normalize( vec3(nCoord,fl) );
vec3 color = vec3(nCoord/2.0 + 0.5, 0.0);
float depth = gl_FragCoord.z;
{
vec4 res = render( camPos - vec3(0.0, 0.0, 0.0) , rd );
color = res.xyz;
depth = CalcDepth(rd,res.w);
}
gl_FragColor = vec4(color , 1.0);
gl_FragDepthEXT = depth;
}

View File

@ -0,0 +1,83 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
uniform vec2 screenDims; // Dimensions of the screen
uniform vec2 c; // c.x = real, c.y = imaginary component. Equation done is z^2 + c
uniform vec2 offset; // Offset of the scale.
uniform float zoom; // Zoom of the scale.
// NOTE: Maximum number of shader for-loop iterations depend on GPU,
// for example, on RasperryPi for this examply only supports up to 60
const int MAX_ITERATIONS = 48; // Max iterations to do
// Square a complex number
vec2 ComplexSquare(vec2 z)
{
return vec2(
z.x * z.x - z.y * z.y,
z.x * z.y * 2.0
);
}
// Convert Hue Saturation Value (HSV) color into RGB
vec3 Hsv2rgb(vec3 c)
{
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
}
void main()
{
/**********************************************************************************************
Julia sets use a function z^2 + c, where c is a constant.
This function is iterated until the nature of the point is determined.
If the magnitude of the number becomes greater than 2, then from that point onward
the number will get bigger and bigger, and will never get smaller (tends towards infinity).
2^2 = 4, 4^2 = 8 and so on.
So at 2 we stop iterating.
If the number is below 2, we keep iterating.
But when do we stop iterating if the number is always below 2 (it converges)?
That is what MAX_ITERATIONS is for.
Then we can divide the iterations by the MAX_ITERATIONS value to get a normalized value that we can
then map to a color.
We use dot product (z.x * z.x + z.y * z.y) to determine the magnitude (length) squared.
And once the magnitude squared is > 4, then magnitude > 2 is also true (saves computational power).
*************************************************************************************************/
// The pixel coordinates are scaled so they are on the mandelbrot scale
// NOTE: fragTexCoord already comes as normalized screen coordinates but offset must be normalized before scaling and zoom
vec2 z = vec2((fragTexCoord.x + offset.x/screenDims.x)*2.5/zoom, (fragTexCoord.y + offset.y/screenDims.y)*1.5/zoom);
int iter = 0;
for (int iterations = 0; iterations < 60; iterations++)
{
z = ComplexSquare(z) + c; // Iterate function
if (dot(z, z) > 4.0) break;
iter = iterations;
}
// Another few iterations decreases errors in the smoothing calculation.
// See http://linas.org/art-gallery/escape/escape.html for more information.
z = ComplexSquare(z) + c;
z = ComplexSquare(z) + c;
// This last part smooths the color (again see link above).
float smoothVal = float(iter) + 1.0 - (log(log(length(z)))/log(2.0));
// Normalize the value so it is between 0 and 1.
float norm = smoothVal/float(MAX_ITERATIONS);
// If in set, color black. 0.999 allows for some float accuracy error.
if (norm > 0.999) gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
else gl_FragColor = vec4(Hsv2rgb(vec3(norm, 1.0, 1.0)), 1.0);
}

View File

@ -0,0 +1,81 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec3 fragPosition;
varying vec2 fragTexCoord;
varying vec4 fragColor;
varying vec3 fragNormal;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
#define MAX_LIGHTS 4
#define LIGHT_DIRECTIONAL 0
#define LIGHT_POINT 1
struct MaterialProperty {
vec3 color;
int useSampler;
sampler2D sampler;
};
struct Light {
int enabled;
int type;
vec3 position;
vec3 target;
vec4 color;
};
// Input lighting values
uniform Light lights[MAX_LIGHTS];
uniform vec4 ambient;
uniform vec3 viewPos;
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor = texture2D(texture0, fragTexCoord);
vec3 lightDot = vec3(0.0);
vec3 normal = normalize(fragNormal);
vec3 viewD = normalize(viewPos - fragPosition);
vec3 specular = vec3(0.0);
// NOTE: Implement here your fragment shader code
for (int i = 0; i < MAX_LIGHTS; i++)
{
if (lights[i].enabled == 1)
{
vec3 light = vec3(0.0);
if (lights[i].type == LIGHT_DIRECTIONAL)
{
light = -normalize(lights[i].target - lights[i].position);
}
if (lights[i].type == LIGHT_POINT)
{
light = normalize(lights[i].position - fragPosition);
}
float NdotL = max(dot(normal, light), 0.0);
lightDot += lights[i].color.rgb*NdotL;
float specCo = 0.0;
if (NdotL > 0.0) specCo = pow(max(0.0, dot(viewD, reflect(-(light), normal))), 16.0); // 16 refers to shine
specular += specCo;
}
}
vec4 finalColor = (texelColor*((colDiffuse + vec4(specular, 1.0))*vec4(lightDot, 1.0)));
finalColor += texelColor*(ambient/10.0);
// Gamma correction
gl_FragColor = pow(finalColor, vec4(1.0/2.2));
}

View File

@ -0,0 +1,59 @@
#version 100
// Input vertex attributes
attribute vec3 vertexPosition;
attribute vec2 vertexTexCoord;
attribute vec3 vertexNormal;
attribute vec4 vertexColor;
// Input uniform values
uniform mat4 mvp;
uniform mat4 matModel;
// Output vertex attributes (to fragment shader)
varying vec3 fragPosition;
varying vec2 fragTexCoord;
varying vec4 fragColor;
varying vec3 fragNormal;
// NOTE: Add here your custom variables
// https://github.com/glslify/glsl-inverse
mat3 inverse(mat3 m)
{
float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];
float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];
float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];
float b01 = a22*a11 - a12*a21;
float b11 = -a22*a10 + a12*a20;
float b21 = a21*a10 - a11*a20;
float det = a00*b01 + a01*b11 + a02*b21;
return mat3(b01, (-a22*a01 + a02*a21), (a12*a01 - a02*a11),
b11, (a22*a00 - a02*a20), (-a12*a00 + a02*a10),
b21, (-a21*a00 + a01*a20), (a11*a00 - a01*a10))/det;
}
// https://github.com/glslify/glsl-transpose
mat3 transpose(mat3 m)
{
return mat3(m[0][0], m[1][0], m[2][0],
m[0][1], m[1][1], m[2][1],
m[0][2], m[1][2], m[2][2]);
}
void main()
{
// Send vertex attributes to fragment shader
fragPosition = vec3(matModel*vec4(vertexPosition, 1.0));
fragTexCoord = vertexTexCoord;
fragColor = vertexColor;
mat3 normalMatrix = transpose(inverse(mat3(matModel)));
fragNormal = normalize(normalMatrix*vertexNormal);
// Calculate final vertex position
gl_Position = mvp*vec4(vertexPosition, 1.0);
}

View File

@ -0,0 +1,36 @@
#version 100
// Input vertex attributes
attribute vec3 vertexPosition;
attribute vec2 vertexTexCoord;
attribute vec3 vertexNormal;
attribute vec4 vertexColor;
attribute mat4 instanceTransform;
// Input uniform values
uniform mat4 mvp;
uniform mat4 matNormal;
// Output vertex attributes (to fragment shader)
varying vec3 fragPosition;
varying vec2 fragTexCoord;
varying vec4 fragColor;
varying vec3 fragNormal;
// NOTE: Add here your custom variables
void main()
{
// Compute MVP for current instance
mat4 mvpi = mvp*instanceTransform;
// Send vertex attributes to fragment shader
fragPosition = vec3(mvpi*vec4(vertexPosition, 1.0));
fragTexCoord = vertexTexCoord;
fragColor = vertexColor;
fragNormal = normalize(vec3(matNormal*vec4(vertexNormal, 1.0)));
// Calculate final vertex position
gl_Position = mvpi*vec4(vertexPosition, 1.0);
}

View File

@ -0,0 +1,24 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform sampler2D mask;
uniform vec4 colDiffuse;
uniform int frame;
// NOTE: Add here your custom variables
void main()
{
vec4 maskColour = texture2D(mask, fragTexCoord + vec2(sin(-float(frame)/150.0)/10.0, cos(-float(frame)/170.0)/10.0));
if (maskColour.r < 0.25) discard;
vec4 texelColor = texture2D(texture0, fragTexCoord + vec2(sin(float(frame)/90.0)/8.0, cos(float(frame)/60.0)/8.0));
gl_FragColor = texelColor*maskColour;
}

View File

@ -0,0 +1,34 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
uniform vec2 textureSize;
uniform float outlineSize;
uniform vec4 outlineColor;
void main()
{
vec4 texel = texture2D(texture0, fragTexCoord); // Get texel color
vec2 texelScale = vec2(0.0);
texelScale.x = outlineSize/textureSize.x;
texelScale.y = outlineSize/textureSize.y;
// We sample four corner texels, but only for the alpha channel (this is for the outline)
vec4 corners = vec4(0.0);
corners.x = texture2D(texture0, fragTexCoord + vec2(texelScale.x, texelScale.y)).a;
corners.y = texture2D(texture0, fragTexCoord + vec2(texelScale.x, -texelScale.y)).a;
corners.z = texture2D(texture0, fragTexCoord + vec2(-texelScale.x, texelScale.y)).a;
corners.w = texture2D(texture0, fragTexCoord + vec2(-texelScale.x, -texelScale.y)).a;
float outline = min(dot(corners, vec4(1.0)), 1.0);
vec4 color = mix(vec4(0.0), outlineColor, outline);
gl_FragColor = mix(color, texel, texel.a);
}

View File

@ -0,0 +1,41 @@
#version 100
precision mediump float;
const int colors = 8;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform ivec3 palette[colors];
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor = texture2D(texture0, fragTexCoord)*fragColor;
// Convert the (normalized) texel color RED component (GB would work, too)
// to the palette index by scaling up from [0, 1] to [0, 255].
int index = int(texelColor.r*255.0);
ivec3 color = ivec3(0);
// NOTE: On GLSL 100 we are not allowed to index a uniform array by a variable value,
// a constantmust be used, so this logic...
if (index == 0) color = palette[0];
else if (index == 1) color = palette[1];
else if (index == 2) color = palette[2];
else if (index == 3) color = palette[3];
else if (index == 4) color = palette[4];
else if (index == 5) color = palette[5];
else if (index == 6) color = palette[6];
else if (index == 7) color = palette[7];
// Calculate final fragment color. Note that the palette color components
// are defined in the range [0, 255] and need to be normalized to [0, 1]
// for OpenGL to work.
gl_FragColor = vec4(float(color.x)/255.0, float(color.y)/255.0, float(color.z)/255.0, texelColor.a);
}

View File

@ -0,0 +1,32 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
// NOTE: Render size values must be passed from code
const float renderWidth = 800.0;
const float renderHeight = 450.0;
float pixelWidth = 5.0;
float pixelHeight = 5.0;
void main()
{
float dx = pixelWidth*(1.0/renderWidth);
float dy = pixelHeight*(1.0/renderHeight);
vec2 coord = vec2(dx*floor(fragTexCoord.x/dx), dy*floor(fragTexCoord.y/dy));
vec3 tc = texture2D(texture0, coord).rgb;
gl_FragColor = vec4(tc, 1.0);
}

View File

@ -0,0 +1,29 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
float gamma = 0.6;
float numColors = 8.0;
void main()
{
vec3 color = texture2D(texture0, fragTexCoord.xy).rgb;
color = pow(color, vec3(gamma, gamma, gamma));
color = color*numColors;
color = floor(color);
color = color/numColors;
color = pow(color, vec3(1.0/gamma));
gl_FragColor = vec4(color, 1.0);
}

View File

@ -0,0 +1,31 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
void main()
{
vec3 color = texture2D(texture0, fragTexCoord).rgb;
vec3 colors[3];
colors[0] = vec3(0.0, 0.0, 1.0);
colors[1] = vec3(1.0, 1.0, 0.0);
colors[2] = vec3(1.0, 0.0, 0.0);
float lum = (color.r + color.g + color.b)/3.0;
vec3 tc = vec3(0.0, 0.0, 0.0);
if (lum < 0.5) tc = mix(colors[0], colors[1], lum/0.5);
else tc = mix(colors[1], colors[2], (lum - 0.5)/0.5);
gl_FragColor = vec4(tc, 1.0);
}

View File

@ -0,0 +1,431 @@
#version 100
precision mediump float;
#extension GL_OES_standard_derivatives : enable
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
uniform vec3 viewEye;
uniform vec3 viewCenter;
uniform float runTime;
uniform vec2 resolution;
// The MIT License
// Copyright © 2013 Inigo Quilez
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// A list of useful distance function to simple primitives, and an example on how to
// do some interesting boolean operations, repetition and displacement.
//
// More info here: http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
#define AA 1 // make this 1 is your machine is too slow
//------------------------------------------------------------------
float sdPlane( vec3 p )
{
return p.y;
}
float sdSphere( vec3 p, float s )
{
return length(p)-s;
}
float sdBox( vec3 p, vec3 b )
{
vec3 d = abs(p) - b;
return min(max(d.x,max(d.y,d.z)),0.0) + length(max(d,0.0));
}
float sdEllipsoid( in vec3 p, in vec3 r )
{
return (length( p/r ) - 1.0) * min(min(r.x,r.y),r.z);
}
float udRoundBox( vec3 p, vec3 b, float r )
{
return length(max(abs(p)-b,0.0))-r;
}
float sdTorus( vec3 p, vec2 t )
{
return length( vec2(length(p.xz)-t.x,p.y) )-t.y;
}
float sdHexPrism( vec3 p, vec2 h )
{
vec3 q = abs(p);
#if 0
return max(q.z-h.y,max((q.x*0.866025+q.y*0.5),q.y)-h.x);
#else
float d1 = q.z-h.y;
float d2 = max((q.x*0.866025+q.y*0.5),q.y)-h.x;
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
#endif
}
float sdCapsule( vec3 p, vec3 a, vec3 b, float r )
{
vec3 pa = p-a, ba = b-a;
float h = clamp( dot(pa,ba)/dot(ba,ba), 0.0, 1.0 );
return length( pa - ba*h ) - r;
}
float sdEquilateralTriangle( in vec2 p )
{
const float k = sqrt(3.0);
p.x = abs(p.x) - 1.0;
p.y = p.y + 1.0/k;
if( p.x + k*p.y > 0.0 ) p = vec2( p.x - k*p.y, -k*p.x - p.y )/2.0;
p.x += 2.0 - 2.0*clamp( (p.x+2.0)/2.0, 0.0, 1.0 );
return -length(p)*sign(p.y);
}
float sdTriPrism( vec3 p, vec2 h )
{
vec3 q = abs(p);
float d1 = q.z-h.y;
#if 1
// distance bound
float d2 = max(q.x*0.866025+p.y*0.5,-p.y)-h.x*0.5;
#else
// correct distance
h.x *= 0.866025;
float d2 = sdEquilateralTriangle(p.xy/h.x)*h.x;
#endif
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
}
float sdCylinder( vec3 p, vec2 h )
{
vec2 d = abs(vec2(length(p.xz),p.y)) - h;
return min(max(d.x,d.y),0.0) + length(max(d,0.0));
}
float sdCone( in vec3 p, in vec3 c )
{
vec2 q = vec2( length(p.xz), p.y );
float d1 = -q.y-c.z;
float d2 = max( dot(q,c.xy), q.y);
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
}
float sdConeSection( in vec3 p, in float h, in float r1, in float r2 )
{
float d1 = -p.y - h;
float q = p.y - h;
float si = 0.5*(r1-r2)/h;
float d2 = max( sqrt( dot(p.xz,p.xz)*(1.0-si*si)) + q*si - r2, q );
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
}
float sdPryamid4(vec3 p, vec3 h ) // h = { cos a, sin a, height }
{
// Tetrahedron = Octahedron - Cube
float box = sdBox( p - vec3(0,-2.0*h.z,0), vec3(2.0*h.z) );
float d = 0.0;
d = max( d, abs( dot(p, vec3( -h.x, h.y, 0 )) ));
d = max( d, abs( dot(p, vec3( h.x, h.y, 0 )) ));
d = max( d, abs( dot(p, vec3( 0, h.y, h.x )) ));
d = max( d, abs( dot(p, vec3( 0, h.y,-h.x )) ));
float octa = d - h.z;
return max(-box,octa); // Subtraction
}
float length2( vec2 p )
{
return sqrt( p.x*p.x + p.y*p.y );
}
float length6( vec2 p )
{
p = p*p*p; p = p*p;
return pow( p.x + p.y, 1.0/6.0 );
}
float length8( vec2 p )
{
p = p*p; p = p*p; p = p*p;
return pow( p.x + p.y, 1.0/8.0 );
}
float sdTorus82( vec3 p, vec2 t )
{
vec2 q = vec2(length2(p.xz)-t.x,p.y);
return length8(q)-t.y;
}
float sdTorus88( vec3 p, vec2 t )
{
vec2 q = vec2(length8(p.xz)-t.x,p.y);
return length8(q)-t.y;
}
float sdCylinder6( vec3 p, vec2 h )
{
return max( length6(p.xz)-h.x, abs(p.y)-h.y );
}
//------------------------------------------------------------------
float opS( float d1, float d2 )
{
return max(-d2,d1);
}
vec2 opU( vec2 d1, vec2 d2 )
{
return (d1.x<d2.x) ? d1 : d2;
}
vec3 opRep( vec3 p, vec3 c )
{
return mod(p,c)-0.5*c;
}
vec3 opTwist( vec3 p )
{
float c = cos(10.0*p.y+10.0);
float s = sin(10.0*p.y+10.0);
mat2 m = mat2(c,-s,s,c);
return vec3(m*p.xz,p.y);
}
//------------------------------------------------------------------
vec2 map( in vec3 pos )
{
vec2 res = opU( vec2( sdPlane( pos), 1.0 ),
vec2( sdSphere( pos-vec3( 0.0,0.25, 0.0), 0.25 ), 46.9 ) );
res = opU( res, vec2( sdBox( pos-vec3( 1.0,0.25, 0.0), vec3(0.25) ), 3.0 ) );
res = opU( res, vec2( udRoundBox( pos-vec3( 1.0,0.25, 1.0), vec3(0.15), 0.1 ), 41.0 ) );
res = opU( res, vec2( sdTorus( pos-vec3( 0.0,0.25, 1.0), vec2(0.20,0.05) ), 25.0 ) );
res = opU( res, vec2( sdCapsule( pos,vec3(-1.3,0.10,-0.1), vec3(-0.8,0.50,0.2), 0.1 ), 31.9 ) );
res = opU( res, vec2( sdTriPrism( pos-vec3(-1.0,0.25,-1.0), vec2(0.25,0.05) ),43.5 ) );
res = opU( res, vec2( sdCylinder( pos-vec3( 1.0,0.30,-1.0), vec2(0.1,0.2) ), 8.0 ) );
res = opU( res, vec2( sdCone( pos-vec3( 0.0,0.50,-1.0), vec3(0.8,0.6,0.3) ), 55.0 ) );
res = opU( res, vec2( sdTorus82( pos-vec3( 0.0,0.25, 2.0), vec2(0.20,0.05) ),50.0 ) );
res = opU( res, vec2( sdTorus88( pos-vec3(-1.0,0.25, 2.0), vec2(0.20,0.05) ),43.0 ) );
res = opU( res, vec2( sdCylinder6( pos-vec3( 1.0,0.30, 2.0), vec2(0.1,0.2) ), 12.0 ) );
res = opU( res, vec2( sdHexPrism( pos-vec3(-1.0,0.20, 1.0), vec2(0.25,0.05) ),17.0 ) );
res = opU( res, vec2( sdPryamid4( pos-vec3(-1.0,0.15,-2.0), vec3(0.8,0.6,0.25) ),37.0 ) );
res = opU( res, vec2( opS( udRoundBox( pos-vec3(-2.0,0.2, 1.0), vec3(0.15),0.05),
sdSphere( pos-vec3(-2.0,0.2, 1.0), 0.25)), 13.0 ) );
res = opU( res, vec2( opS( sdTorus82( pos-vec3(-2.0,0.2, 0.0), vec2(0.20,0.1)),
sdCylinder( opRep( vec3(atan(pos.x+2.0,pos.z)/6.2831, pos.y, 0.02+0.5*length(pos-vec3(-2.0,0.2, 0.0))), vec3(0.05,1.0,0.05)), vec2(0.02,0.6))), 51.0 ) );
res = opU( res, vec2( 0.5*sdSphere( pos-vec3(-2.0,0.25,-1.0), 0.2 ) + 0.03*sin(50.0*pos.x)*sin(50.0*pos.y)*sin(50.0*pos.z), 65.0 ) );
res = opU( res, vec2( 0.5*sdTorus( opTwist(pos-vec3(-2.0,0.25, 2.0)),vec2(0.20,0.05)), 46.7 ) );
res = opU( res, vec2( sdConeSection( pos-vec3( 0.0,0.35,-2.0), 0.15, 0.2, 0.1 ), 13.67 ) );
res = opU( res, vec2( sdEllipsoid( pos-vec3( 1.0,0.35,-2.0), vec3(0.15, 0.2, 0.05) ), 43.17 ) );
return res;
}
vec2 castRay( in vec3 ro, in vec3 rd )
{
float tmin = 0.2;
float tmax = 30.0;
#if 1
// bounding volume
float tp1 = (0.0-ro.y)/rd.y; if( tp1>0.0 ) tmax = min( tmax, tp1 );
float tp2 = (1.6-ro.y)/rd.y; if( tp2>0.0 ) { if( ro.y>1.6 ) tmin = max( tmin, tp2 );
else tmax = min( tmax, tp2 ); }
#endif
float t = tmin;
float m = -1.0;
for( int i=0; i<64; i++ )
{
float precis = 0.0005*t;
vec2 res = map( ro+rd*t );
if( res.x<precis || t>tmax ) break;
t += res.x;
m = res.y;
}
if( t>tmax ) m=-1.0;
return vec2( t, m );
}
float calcSoftshadow( in vec3 ro, in vec3 rd, in float mint, in float tmax )
{
float res = 1.0;
float t = mint;
for( int i=0; i<16; i++ )
{
float h = map( ro + rd*t ).x;
res = min( res, 8.0*h/t );
t += clamp( h, 0.02, 0.10 );
if( h<0.001 || t>tmax ) break;
}
return clamp( res, 0.0, 1.0 );
}
vec3 calcNormal( in vec3 pos )
{
vec2 e = vec2(1.0,-1.0)*0.5773*0.0005;
return normalize( e.xyy*map( pos + e.xyy ).x +
e.yyx*map( pos + e.yyx ).x +
e.yxy*map( pos + e.yxy ).x +
e.xxx*map( pos + e.xxx ).x );
/*
vec3 eps = vec3( 0.0005, 0.0, 0.0 );
vec3 nor = vec3(
map(pos+eps.xyy).x - map(pos-eps.xyy).x,
map(pos+eps.yxy).x - map(pos-eps.yxy).x,
map(pos+eps.yyx).x - map(pos-eps.yyx).x );
return normalize(nor);
*/
}
float calcAO( in vec3 pos, in vec3 nor )
{
float occ = 0.0;
float sca = 1.0;
for( int i=0; i<5; i++ )
{
float hr = 0.01 + 0.12*float(i)/4.0;
vec3 aopos = nor * hr + pos;
float dd = map( aopos ).x;
occ += -(dd-hr)*sca;
sca *= 0.95;
}
return clamp( 1.0 - 3.0*occ, 0.0, 1.0 );
}
// http://iquilezles.org/www/articles/checkerfiltering/checkerfiltering.htm
float checkersGradBox( in vec2 p )
{
// filter kernel
vec2 w = fwidth(p) + 0.001;
// analytical integral (box filter)
vec2 i = 2.0*(abs(fract((p-0.5*w)*0.5)-0.5)-abs(fract((p+0.5*w)*0.5)-0.5))/w;
// xor pattern
return 0.5 - 0.5*i.x*i.y;
}
vec3 render( in vec3 ro, in vec3 rd )
{
vec3 col = vec3(0.7, 0.9, 1.0) +rd.y*0.8;
vec2 res = castRay(ro,rd);
float t = res.x;
float m = res.y;
if( m>-0.5 )
{
vec3 pos = ro + t*rd;
vec3 nor = calcNormal( pos );
vec3 ref = reflect( rd, nor );
// material
col = 0.45 + 0.35*sin( vec3(0.05,0.08,0.10)*(m-1.0) );
if( m<1.5 )
{
float f = checkersGradBox( 5.0*pos.xz );
col = 0.3 + f*vec3(0.1);
}
// lighting
float occ = calcAO( pos, nor );
vec3 lig = normalize( vec3(cos(-0.4 * runTime), sin(0.7 * runTime), -0.6) );
vec3 hal = normalize( lig-rd );
float amb = clamp( 0.5+0.5*nor.y, 0.0, 1.0 );
float dif = clamp( dot( nor, lig ), 0.0, 1.0 );
float bac = clamp( dot( nor, normalize(vec3(-lig.x,0.0,-lig.z))), 0.0, 1.0 )*clamp( 1.0-pos.y,0.0,1.0);
float dom = smoothstep( -0.1, 0.1, ref.y );
float fre = pow( clamp(1.0+dot(nor,rd),0.0,1.0), 2.0 );
dif *= calcSoftshadow( pos, lig, 0.02, 2.5 );
dom *= calcSoftshadow( pos, ref, 0.02, 2.5 );
float spe = pow( clamp( dot( nor, hal ), 0.0, 1.0 ),16.0)*
dif *
(0.04 + 0.96*pow( clamp(1.0+dot(hal,rd),0.0,1.0), 5.0 ));
vec3 lin = vec3(0.0);
lin += 1.30*dif*vec3(1.00,0.80,0.55);
lin += 0.40*amb*vec3(0.40,0.60,1.00)*occ;
lin += 0.50*dom*vec3(0.40,0.60,1.00)*occ;
lin += 0.50*bac*vec3(0.25,0.25,0.25)*occ;
lin += 0.25*fre*vec3(1.00,1.00,1.00)*occ;
col = col*lin;
col += 10.00*spe*vec3(1.00,0.90,0.70);
col = mix( col, vec3(0.8,0.9,1.0), 1.0-exp( -0.0002*t*t*t ) );
}
return vec3( clamp(col,0.0,1.0) );
}
mat3 setCamera( in vec3 ro, in vec3 ta, float cr )
{
vec3 cw = normalize(ta-ro);
vec3 cp = vec3(sin(cr), cos(cr),0.0);
vec3 cu = normalize( cross(cw,cp) );
vec3 cv = normalize( cross(cu,cw) );
return mat3( cu, cv, cw );
}
void main()
{
vec3 tot = vec3(0.0);
#if AA>1
for( int m=0; m<AA; m++ )
for( int n=0; n<AA; n++ )
{
// pixel coordinates
vec2 o = vec2(float(m),float(n)) / float(AA) - 0.5;
vec2 p = (-resolution.xy + 2.0*(gl_FragCoord.xy+o))/resolution.y;
#else
vec2 p = (-resolution.xy + 2.0*gl_FragCoord.xy)/resolution.y;
#endif
// RAY: Camera is provided from raylib
//vec3 ro = vec3( -0.5+3.5*cos(0.1*time + 6.0*mo.x), 1.0 + 2.0*mo.y, 0.5 + 4.0*sin(0.1*time + 6.0*mo.x) );
vec3 ro = viewEye;
vec3 ta = viewCenter;
// camera-to-world transformation
mat3 ca = setCamera( ro, ta, 0.0 );
// ray direction
vec3 rd = ca * normalize( vec3(p.xy,2.0) );
// render
vec3 col = render( ro, rd );
// gamma
col = pow( col, vec3(0.4545) );
tot += col;
#if AA>1
}
tot /= float(AA*AA);
#endif
gl_FragColor = vec4( tot, 1.0 );
}

View File

@ -0,0 +1,39 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord; // Texture coordinates (sampler2D)
varying vec4 fragColor; // Tint color
// Uniform inputs
uniform vec2 resolution; // Viewport resolution (in pixels)
uniform vec2 mouse; // Mouse pixel xy coordinates
uniform float time; // Total run time (in secods)
// Draw circle
vec4 DrawCircle(vec2 fragCoord, vec2 position, float radius, vec3 color)
{
float d = length(position - fragCoord) - radius;
float t = clamp(d, 0.0, 1.0);
return vec4(color, 1.0 - t);
}
void main()
{
vec2 fragCoord = gl_FragCoord.xy;
vec2 position = vec2(mouse.x, resolution.y - mouse.y);
float radius = 40.0;
// Draw background layer
vec4 colorA = vec4(0.2,0.2,0.8, 1.0);
vec4 colorB = vec4(1.0,0.7,0.2, 1.0);
vec4 layer1 = mix(colorA, colorB, abs(sin(time*0.1)));
// Draw circle layer
vec3 color = vec3(0.9, 0.16, 0.21);
vec4 layer2 = DrawCircle(fragCoord, position, radius, color);
// Blend the two layers
gl_FragColor = mix(layer1, layer2, layer2.a);
}

View File

@ -0,0 +1,44 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
float offset = 0.0;
float frequency = 450.0/3.0;
uniform float time;
void main()
{
/*
// Scanlines method 1
float tval = 0; //time
vec2 uv = 0.5 + (fragTexCoord - 0.5)*(0.9 + 0.01*sin(0.5*tval));
vec4 color = texture2D(texture0, fragTexCoord);
color = clamp(color*0.5 + 0.5*color*color*1.2, 0.0, 1.0);
color *= 0.5 + 0.5*16.0*uv.x*uv.y*(1.0 - uv.x)*(1.0 - uv.y);
color *= vec4(0.8, 1.0, 0.7, 1);
color *= 0.9 + 0.1*sin(10.0*tval + uv.y*1000.0);
color *= 0.97 + 0.03*sin(110.0*tval);
fragColor = color;
*/
// Scanlines method 2
float globalPos = (fragTexCoord.y + offset) * frequency;
float wavePos = cos((fract(globalPos) - 0.5)*3.14);
vec4 color = texture2D(texture0, fragTexCoord);
gl_FragColor = mix(vec4(0.0, 0.3, 0.0, 0.0), color, wavePos);
}

View File

@ -0,0 +1,25 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
const float smoothing = 1.0/16.0;
void main()
{
// Texel color fetching from texture sampler
// NOTE: Calculate alpha using signed distance field (SDF)
float distance = texture2D(texture0, fragTexCoord).a;
float alpha = smoothstep(0.5 - smoothing, 0.5 + smoothing, distance);
// Calculate final fragment color
gl_FragColor = vec4(fragColor.rgb, fragColor.a*alpha);
}

View File

@ -0,0 +1,31 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec3 fragPosition;
// Input uniform values
uniform samplerCube environmentMap;
uniform bool vflipped;
uniform bool doGamma;
void main()
{
// Fetch color from texture map
vec4 texelColor = vec4(0.0);
if (vflipped) texelColor = textureCube(environmentMap, vec3(fragPosition.x, -fragPosition.y, fragPosition.z));
else texelColor = textureCube(environmentMap, fragPosition);
vec3 color = vec3(texelColor.x, texelColor.y, texelColor.z);
if (doGamma) // Apply gamma correction
{
color = color/(color + vec3(1.0));
color = pow(color, vec3(1.0/2.2));
}
// Calculate final fragment color
gl_FragColor = vec4(color, 1.0);
}

View File

@ -0,0 +1,24 @@
#version 100
// Input vertex attributes
attribute vec3 vertexPosition;
// Input uniform values
uniform mat4 matProjection;
uniform mat4 matView;
// Output vertex attributes (to fragment shader)
varying vec3 fragPosition;
void main()
{
// Calculate fragment position based on model transformations
fragPosition = vertexPosition;
// Remove translation from the view matrix
mat4 rotView = mat4(mat3(matView));
vec4 clipPos = matProjection*rotView*vec4(vertexPosition, 1.0);
// Calculate final vertex position
gl_Position = clipPos;
}

View File

@ -0,0 +1,40 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
vec2 resolution = vec2(800.0, 450.0);
void main()
{
float x = 1.0/resolution.x;
float y = 1.0/resolution.y;
vec4 horizEdge = vec4(0.0);
horizEdge -= texture2D(texture0, vec2(fragTexCoord.x - x, fragTexCoord.y - y))*1.0;
horizEdge -= texture2D(texture0, vec2(fragTexCoord.x - x, fragTexCoord.y ))*2.0;
horizEdge -= texture2D(texture0, vec2(fragTexCoord.x - x, fragTexCoord.y + y))*1.0;
horizEdge += texture2D(texture0, vec2(fragTexCoord.x + x, fragTexCoord.y - y))*1.0;
horizEdge += texture2D(texture0, vec2(fragTexCoord.x + x, fragTexCoord.y ))*2.0;
horizEdge += texture2D(texture0, vec2(fragTexCoord.x + x, fragTexCoord.y + y))*1.0;
vec4 vertEdge = vec4(0.0);
vertEdge -= texture2D(texture0, vec2(fragTexCoord.x - x, fragTexCoord.y - y))*1.0;
vertEdge -= texture2D(texture0, vec2(fragTexCoord.x , fragTexCoord.y - y))*2.0;
vertEdge -= texture2D(texture0, vec2(fragTexCoord.x + x, fragTexCoord.y - y))*1.0;
vertEdge += texture2D(texture0, vec2(fragTexCoord.x - x, fragTexCoord.y + y))*1.0;
vertEdge += texture2D(texture0, vec2(fragTexCoord.x , fragTexCoord.y + y))*2.0;
vertEdge += texture2D(texture0, vec2(fragTexCoord.x + x, fragTexCoord.y + y))*1.0;
vec3 edge = sqrt((horizEdge.rgb*horizEdge.rgb) + (vertEdge.rgb*vertEdge.rgb));
gl_FragColor = vec4(edge, texture2D(texture0, fragTexCoord).a);
}

View File

@ -0,0 +1,77 @@
#version 100
precision mediump float;
#define MAX_SPOTS 3
struct Spot {
vec2 pos; // window coords of spot
float inner; // inner fully transparent centre radius
float radius; // alpha fades out to this radius
};
uniform Spot spots[MAX_SPOTS]; // Spotlight positions array
uniform float screenWidth; // Width of the screen
void main()
{
float alpha = 1.0;
// Get the position of the current fragment (screen coordinates!)
vec2 pos = vec2(gl_FragCoord.x, gl_FragCoord.y);
// Find out which spotlight is nearest
float d = 65000.0; // some high value
int fi = -1; // found index
for (int i = 0; i < MAX_SPOTS; i++)
{
for (int j = 0; j < MAX_SPOTS; j++)
{
float dj = distance(pos, spots[j].pos) - spots[j].radius + spots[i].radius;
if (d > dj)
{
d = dj;
fi = i;
}
}
}
// d now equals distance to nearest spot...
// allowing for the different radii of all spotlights
if (fi == 0)
{
if (d > spots[0].radius) alpha = 1.0;
else
{
if (d < spots[0].inner) alpha = 0.0;
else alpha = (d - spots[0].inner)/(spots[0].radius - spots[0].inner);
}
}
else if (fi == 1)
{
if (d > spots[1].radius) alpha = 1.0;
else
{
if (d < spots[1].inner) alpha = 0.0;
else alpha = (d - spots[1].inner)/(spots[1].radius - spots[1].inner);
}
}
else if (fi == 2)
{
if (d > spots[2].radius) alpha = 1.0;
else
{
if (d < spots[2].inner) alpha = 0.0;
else alpha = (d - spots[2].inner)/(spots[2].radius - spots[2].inner);
}
}
// Right hand side of screen is dimly lit,
// could make the threshold value user definable
if ((pos.x > screenWidth/2.0) && (alpha > 0.9)) alpha = 0.9;
// could make the black out colour user definable...
gl_FragColor = vec4(0, 0, 0, alpha);
}

View File

@ -0,0 +1,46 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
// NOTE: Render size values should be passed from code
const float renderWidth = 800.0;
const float renderHeight = 450.0;
float radius = 250.0;
float angle = 0.8;
uniform vec2 center;
void main()
{
vec2 texSize = vec2(renderWidth, renderHeight);
vec2 tc = fragTexCoord*texSize;
tc -= center;
float dist = length(tc);
if (dist < radius)
{
float percent = (radius - dist)/radius;
float theta = percent*percent*angle*8.0;
float s = sin(theta);
float c = cos(theta);
tc = vec2(dot(tc, vec2(c, -s)), dot(tc, vec2(s, c)));
}
tc += center;
vec4 color = texture2D(texture0, tc/texSize)*colDiffuse*fragColor;;
gl_FragColor = vec4(color.rgb, 1.0);;
}

View File

@ -0,0 +1,36 @@
#version 100
precision mediump float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
uniform float secondes;
uniform vec2 size;
uniform float freqX;
uniform float freqY;
uniform float ampX;
uniform float ampY;
uniform float speedX;
uniform float speedY;
void main() {
float pixelWidth = 1.0 / size.x;
float pixelHeight = 1.0 / size.y;
float aspect = pixelHeight / pixelWidth;
float boxLeft = 0.0;
float boxTop = 0.0;
vec2 p = fragTexCoord;
p.x += cos((fragTexCoord.y - boxTop) * freqX / ( pixelWidth * 750.0) + (secondes * speedX)) * ampX * pixelWidth;
p.y += sin((fragTexCoord.x - boxLeft) * freqY * aspect / ( pixelHeight * 750.0) + (secondes * speedY)) * ampY * pixelHeight;
gl_FragColor = texture2D(texture0, p)*colDiffuse*fragColor;
}

View File

@ -0,0 +1,17 @@
#version 100
#extension GL_EXT_frag_depth : enable
precision mediump float; // Precision required for OpenGL ES2 (WebGL)
varying vec2 fragTexCoord;
varying vec4 fragColor;
uniform sampler2D texture0;
uniform vec4 colDiffuse;
void main()
{
vec4 texelColor = texture2D(texture0, fragTexCoord);
gl_FragColor = texelColor*colDiffuse*fragColor;
gl_FragDepthEXT = 1.0 - gl_FragCoord.z;
}

View File

@ -0,0 +1,22 @@
#version 120
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
uniform vec2 resolution = vec2(800, 450);
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor = texture2D(texture0, fragTexCoord);
// NOTE: Implement here your fragment shader code
gl_FragColor = texelColor*colDiffuse;
}

View File

@ -0,0 +1,26 @@
#version 120
// Input vertex attributes
attribute vec3 vertexPosition;
attribute vec2 vertexTexCoord;
attribute vec3 vertexNormal;
attribute vec4 vertexColor;
// Input uniform values
uniform mat4 mvp;
// Output vertex attributes (to fragment shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// NOTE: Add here your custom variables
void main()
{
// Send vertex attributes to fragment shader
fragTexCoord = vertexTexCoord;
fragColor = vertexColor;
// Calculate final vertex position
gl_Position = mvp*vec4(vertexPosition, 1.0);
}

View File

@ -0,0 +1,37 @@
#version 120
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
const vec2 size = vec2(800, 450); // Framebuffer size
const float samples = 5.0; // Pixels per axis; higher = bigger glow, worse performance
const float quality = 2.5; // Defines size factor: Lower = smaller glow, better quality
void main()
{
vec4 sum = vec4(0);
vec2 sizeFactor = vec2(1)/size*quality;
// Texel color fetching from texture sampler
vec4 source = texture2D(texture0, fragTexCoord);
const int range = 2; // should be = (samples - 1)/2;
for (int x = -range; x <= range; x++)
{
for (int y = -range; y <= range; y++)
{
sum += texture2D(texture0, fragTexCoord + vec2(x, y)*sizeFactor);
}
}
// Calculate final fragment color
gl_FragColor = ((sum/(samples*samples)) + source)*colDiffuse;
}

View File

@ -0,0 +1,32 @@
#version 120
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
// NOTE: Render size values must be passed from code
const float renderWidth = 800.0;
const float renderHeight = 450.0;
vec3 offset = vec3(0.0, 1.3846153846, 3.2307692308);
vec3 weight = vec3(0.2270270270, 0.3162162162, 0.0702702703);
void main()
{
// Texel color fetching from texture sampler
vec3 tc = texture2D(texture0, fragTexCoord).rgb*weight.x;
tc += texture2D(texture0, fragTexCoord + vec2(offset.y)/renderWidth, 0.0).rgb*weight.y;
tc += texture2D(texture0, fragTexCoord - vec2(offset.y)/renderWidth, 0.0).rgb*weight.y;
tc += texture2D(texture0, fragTexCoord + vec2(offset.z)/renderWidth, 0.0).rgb*weight.z;
tc += texture2D(texture0, fragTexCoord - vec2(offset.z)/renderWidth, 0.0).rgb*weight.z;
gl_FragColor = vec4(tc, 1.0);
}

View File

@ -0,0 +1,45 @@
# version 120
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
float hatchOffsetY = 5.0;
float lumThreshold01 = 0.9;
float lumThreshold02 = 0.7;
float lumThreshold03 = 0.5;
float lumThreshold04 = 0.3;
void main()
{
vec3 tc = vec3(1.0, 1.0, 1.0);
float lum = length(texture2D(texture0, fragTexCoord).rgb);
if (lum < lumThreshold01)
{
if (mod(gl_FragCoord.x + gl_FragCoord.y, 10.0) == 0.0) tc = vec3(0.0, 0.0, 0.0);
}
if (lum < lumThreshold02)
{
if (mod(gl_FragCoord .x - gl_FragCoord .y, 10.0) == 0.0) tc = vec3(0.0, 0.0, 0.0);
}
if (lum < lumThreshold03)
{
if (mod(gl_FragCoord .x + gl_FragCoord .y - hatchOffsetY, 10.0) == 0.0) tc = vec3(0.0, 0.0, 0.0);
}
if (lum < lumThreshold04)
{
if (mod(gl_FragCoord .x - gl_FragCoord .y - hatchOffsetY, 10.0) == 0.0) tc = vec3(0.0, 0.0, 0.0);
}
gl_FragColor = vec4(tc, 1.0);
}

View File

@ -0,0 +1,55 @@
# version 120
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
// NOTE: Render size values must be passed from code
const float renderWidth = 800.0;
const float renderHeight = 450.0;
float stitchingSize = 6.0;
int invert = 0;
vec4 PostFX(sampler2D tex, vec2 uv)
{
vec4 c = vec4(0.0);
float size = stitchingSize;
vec2 cPos = uv * vec2(renderWidth, renderHeight);
vec2 tlPos = floor(cPos / vec2(size, size));
tlPos *= size;
int remX = int(mod(cPos.x, size));
int remY = int(mod(cPos.y, size));
if (remX == 0 && remY == 0) tlPos = cPos;
vec2 blPos = tlPos;
blPos.y += (size - 1.0);
if ((remX == remY) || (((int(cPos.x) - int(blPos.x)) == (int(blPos.y) - int(cPos.y)))))
{
if (invert == 1) c = vec4(0.2, 0.15, 0.05, 1.0);
else c = texture2D(tex, tlPos * vec2(1.0/renderWidth, 1.0/renderHeight)) * 1.4;
}
else
{
if (invert == 1) c = texture2D(tex, tlPos * vec2(1.0/renderWidth, 1.0/renderHeight)) * 1.4;
else c = vec4(0.0, 0.0, 0.0, 1.0);
}
return c;
}
void main()
{
vec3 tc = PostFX(texture0, fragTexCoord).rgb;
gl_FragColor = vec4(tc, 1.0);
}

View File

@ -0,0 +1,52 @@
#version 120
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
// Input uniform values
uniform sampler2D texture0;
// NOTE: Default parameters for Oculus Rift DK2 device
const vec2 LeftLensCenter = vec2(0.2863248, 0.5);
const vec2 RightLensCenter = vec2(0.7136753, 0.5);
const vec2 LeftScreenCenter = vec2(0.25, 0.5);
const vec2 RightScreenCenter = vec2(0.75, 0.5);
const vec2 Scale = vec2(0.25, 0.45);
const vec2 ScaleIn = vec2(4.0, 2.5);
const vec4 HmdWarpParam = vec4(1.0, 0.22, 0.24, 0.0);
const vec4 ChromaAbParam = vec4(0.996, -0.004, 1.014, 0.0);
void main()
{
// The following two variables need to be set per eye
vec2 LensCenter = fragTexCoord.x < 0.5 ? LeftLensCenter : RightLensCenter;
vec2 ScreenCenter = fragTexCoord.x < 0.5 ? LeftScreenCenter : RightScreenCenter;
// Scales input texture coordinates for distortion: vec2 HmdWarp(vec2 fragTexCoord, vec2 LensCenter)
vec2 theta = (fragTexCoord - LensCenter)*ScaleIn; // Scales to [-1, 1]
float rSq = theta.x*theta.x + theta.y*theta.y;
vec2 theta1 = theta*(HmdWarpParam.x + HmdWarpParam.y*rSq + HmdWarpParam.z*rSq*rSq + HmdWarpParam.w*rSq*rSq*rSq);
//vec2 tc = LensCenter + Scale*theta1;
// Detect whether blue texture coordinates are out of range since these will scaled out the furthest
vec2 thetaBlue = theta1*(ChromaAbParam.z + ChromaAbParam.w*rSq);
vec2 tcBlue = LensCenter + Scale*thetaBlue;
if (any(bvec2(clamp(tcBlue, ScreenCenter - vec2(0.25, 0.5), ScreenCenter + vec2(0.25, 0.5)) - tcBlue))) gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
else
{
// Do blue texture lookup
float blue = texture2D(texture0, tcBlue).b;
// Do green lookup (no scaling)
vec2 tcGreen = LensCenter + Scale*theta1;
float green = texture2D(texture0, tcGreen).g;
// Do red scale and lookup
vec2 thetaRed = theta1*(ChromaAbParam.x + ChromaAbParam.y*rSq);
vec2 tcRed = LensCenter + Scale*thetaRed;
float red = texture2D(texture0, tcRed).r;
gl_FragColor = vec4(red, green, blue, 1.0);
}
}

View File

@ -0,0 +1,35 @@
#version 120
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
void main()
{
vec4 color = texture2D(texture0, fragTexCoord);
color += texture2D(texture0, fragTexCoord + 0.001);
color += texture2D(texture0, fragTexCoord + 0.003);
color += texture2D(texture0, fragTexCoord + 0.005);
color += texture2D(texture0, fragTexCoord + 0.007);
color += texture2D(texture0, fragTexCoord + 0.009);
color += texture2D(texture0, fragTexCoord + 0.011);
color += texture2D(texture0, fragTexCoord - 0.001);
color += texture2D(texture0, fragTexCoord - 0.003);
color += texture2D(texture0, fragTexCoord - 0.005);
color += texture2D(texture0, fragTexCoord - 0.007);
color += texture2D(texture0, fragTexCoord - 0.009);
color += texture2D(texture0, fragTexCoord - 0.011);
color.rgb = vec3((color.r + color.g + color.b)/3.0);
color = color/9.5;
gl_FragColor = color;
}

View File

@ -0,0 +1,41 @@
#version 120
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
const float PI = 3.1415926535;
void main()
{
float aperture = 178.0;
float apertureHalf = 0.5 * aperture * (PI / 180.0);
float maxFactor = sin(apertureHalf);
vec2 uv = vec2(0.0);
vec2 xy = 2.0 * fragTexCoord.xy - 1.0;
float d = length(xy);
if (d < (2.0 - maxFactor))
{
d = length(xy * maxFactor);
float z = sqrt(1.0 - d * d);
float r = atan(d, z) / PI;
float phi = atan(xy.y, xy.x);
uv.x = r * cos(phi) + 0.5;
uv.y = r * sin(phi) + 0.5;
}
else
{
uv = fragTexCoord.xy;
}
gl_FragColor = texture2D(texture0, uv);
}

View File

@ -0,0 +1,92 @@
#version 120
// Input vertex attributes (from vertex shader)
varying vec3 fragPosition;
varying vec2 fragTexCoord;
varying vec4 fragColor;
varying vec3 fragNormal;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
#define MAX_LIGHTS 4
#define LIGHT_DIRECTIONAL 0
#define LIGHT_POINT 1
struct MaterialProperty {
vec3 color;
int useSampler;
sampler2D sampler;
};
struct Light {
int enabled;
int type;
vec3 position;
vec3 target;
vec4 color;
};
// Input lighting values
uniform Light lights[MAX_LIGHTS];
uniform vec4 ambient;
uniform vec3 viewPos;
uniform float fogDensity;
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor = texture2D(texture0, fragTexCoord);
vec3 lightDot = vec3(0.0);
vec3 normal = normalize(fragNormal);
vec3 viewD = normalize(viewPos - fragPosition);
vec3 specular = vec3(0.0);
// NOTE: Implement here your fragment shader code
for (int i = 0; i < MAX_LIGHTS; i++)
{
if (lights[i].enabled == 1)
{
vec3 light = vec3(0.0);
if (lights[i].type == LIGHT_DIRECTIONAL) light = -normalize(lights[i].target - lights[i].position);
if (lights[i].type == LIGHT_POINT) light = normalize(lights[i].position - fragPosition);
float NdotL = max(dot(normal, light), 0.0);
lightDot += lights[i].color.rgb*NdotL;
float specCo = 0.0;
if (NdotL > 0.0) specCo = pow(max(0.0, dot(viewD, reflect(-(light), normal))), 16.0); // Shine: 16.0
specular += specCo;
}
}
vec4 finalColor = (texelColor*((colDiffuse + vec4(specular,1))*vec4(lightDot, 1.0)));
finalColor += texelColor*(ambient/10.0);
// Gamma correction
finalColor = pow(finalColor, vec4(1.0/2.2));
// Fog calculation
float dist = length(viewPos - fragPosition);
// these could be parameters...
const vec4 fogColor = vec4(0.5, 0.5, 0.5, 1.0);
//const float fogDensity = 0.16;
// Exponential fog
float fogFactor = 1.0/exp((dist*fogDensity)*(dist*fogDensity));
// Linear fog (less nice)
//const float fogStart = 2.0;
//const float fogEnd = 10.0;
//float fogFactor = (fogEnd - dist)/(fogEnd - fogStart);
fogFactor = clamp(fogFactor, 0.0, 1.0);
gl_FragColor = mix(fogColor, finalColor, fogFactor);
}

View File

@ -0,0 +1,23 @@
#version 120
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor = texture2D(texture0, fragTexCoord)*colDiffuse*fragColor;
// Convert texel color to grayscale using NTSC conversion weights
float gray = dot(texelColor.rgb, vec3(0.299, 0.587, 0.114));
// Calculate final fragment color
gl_FragColor = vec4(gray, gray, gray, texelColor.a);
}

View File

@ -0,0 +1,79 @@
#version 120
// Input vertex attributes (from vertex shader)
varying vec3 fragPosition;
varying vec2 fragTexCoord;
varying vec4 fragColor;
varying vec3 fragNormal;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
#define MAX_LIGHTS 4
#define LIGHT_DIRECTIONAL 0
#define LIGHT_POINT 1
struct MaterialProperty {
vec3 color;
int useSampler;
sampler2D sampler;
};
struct Light {
int enabled;
int type;
vec3 position;
vec3 target;
vec4 color;
};
// Input lighting values
uniform Light lights[MAX_LIGHTS];
uniform vec4 ambient;
uniform vec3 viewPos;
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor = texture2D(texture0, fragTexCoord);
vec3 lightDot = vec3(0.0);
vec3 normal = normalize(fragNormal);
vec3 viewD = normalize(viewPos - fragPosition);
vec3 specular = vec3(0.0);
// NOTE: Implement here your fragment shader code
for (int i = 0; i < MAX_LIGHTS; i++)
{
if (lights[i].enabled == 1)
{
vec3 light = vec3(0.0);
if (lights[i].type == LIGHT_DIRECTIONAL)
{
light = -normalize(lights[i].target - lights[i].position);
}
if (lights[i].type == LIGHT_POINT)
{
light = normalize(lights[i].position - fragPosition);
}
float NdotL = max(dot(normal, light), 0.0);
lightDot += lights[i].color.rgb*NdotL;
float specCo = 0.0;
if (NdotL > 0.0) specCo = pow(max(0.0, dot(viewD, reflect(-(light), normal))), 16.0); // 16 refers to shine
specular += specCo;
}
}
vec4 finalColor = (texelColor*((colDiffuse + vec4(specular, 1.0))*vec4(lightDot, 1.0)));
finalColor += texelColor*(ambient/10.0);
// Gamma correction
gl_FragColor = pow(finalColor, vec4(1.0/2.2));
}

View File

@ -0,0 +1,59 @@
#version 120
// Input vertex attributes
attribute vec3 vertexPosition;
attribute vec2 vertexTexCoord;
attribute vec3 vertexNormal;
attribute vec4 vertexColor;
// Input uniform values
uniform mat4 mvp;
uniform mat4 matModel;
// Output vertex attributes (to fragment shader)
varying vec3 fragPosition;
varying vec2 fragTexCoord;
varying vec4 fragColor;
varying vec3 fragNormal;
// NOTE: Add here your custom variables
// https://github.com/glslify/glsl-inverse
mat3 inverse(mat3 m)
{
float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];
float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];
float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];
float b01 = a22*a11 - a12*a21;
float b11 = -a22*a10 + a12*a20;
float b21 = a21*a10 - a11*a20;
float det = a00*b01 + a01*b11 + a02*b21;
return mat3(b01, (-a22*a01 + a02*a21), (a12*a01 - a02*a11),
b11, (a22*a00 - a02*a20), (-a12*a00 + a02*a10),
b21, (-a21*a00 + a01*a20), (a11*a00 - a01*a10))/det;
}
// https://github.com/glslify/glsl-transpose
mat3 transpose(mat3 m)
{
return mat3(m[0][0], m[1][0], m[2][0],
m[0][1], m[1][1], m[2][1],
m[0][2], m[1][2], m[2][2]);
}
void main()
{
// Send vertex attributes to fragment shader
fragPosition = vec3(matModel*vec4(vertexPosition, 1.0));
fragTexCoord = vertexTexCoord;
fragColor = vertexColor;
mat3 normalMatrix = transpose(inverse(mat3(matModel)));
fragNormal = normalize(normalMatrix*vertexNormal);
// Calculate final vertex position
gl_Position = mvp*vec4(vertexPosition, 1.0);
}

View File

@ -0,0 +1,27 @@
#version 120
const int colors = 8;
// Input fragment attributes (from fragment shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform ivec3 palette[colors];
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor = texture(texture0, fragTexCoord) * fragColor;
// Convert the (normalized) texel color RED component (GB would work, too)
// to the palette index by scaling up from [0, 1] to [0, 255].
int index = int(texelColor.r * 255.0);
ivec3 color = palette[index];
// Calculate final fragment color. Note that the palette color components
// are defined in the range [0, 255] and need to be normalized to [0, 1]
// for OpenGL to work.
gl_FragColor = vec4(color / 255.0, texelColor.a);
}

View File

@ -0,0 +1,30 @@
#version 120
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
// NOTE: Render size values must be passed from code
const float renderWidth = 800.0;
const float renderHeight = 450.0;
float pixelWidth = 5.0;
float pixelHeight = 5.0;
void main()
{
float dx = pixelWidth*(1.0/renderWidth);
float dy = pixelHeight*(1.0/renderHeight);
vec2 coord = vec2(dx*floor(fragTexCoord.x/dx), dy*floor(fragTexCoord.y/dy));
vec3 tc = texture2D(texture0, coord).rgb;
gl_FragColor = vec4(tc, 1.0);
}

View File

@ -0,0 +1,27 @@
#version 120
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
float gamma = 0.6;
float numColors = 8.0;
void main()
{
vec3 color = texture2D(texture0, fragTexCoord.xy).rgb;
color = pow(color, vec3(gamma, gamma, gamma));
color = color*numColors;
color = floor(color);
color = color/numColors;
color = pow(color, vec3(1.0/gamma));
gl_FragColor = vec4(color, 1.0);
}

View File

@ -0,0 +1,29 @@
#version 120
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
void main()
{
vec3 color = texture2D(texture0, fragTexCoord).rgb;
vec3 colors[3];
colors[0] = vec3(0.0, 0.0, 1.0);
colors[1] = vec3(1.0, 1.0, 0.0);
colors[2] = vec3(1.0, 0.0, 0.0);
float lum = (color.r + color.g + color.b)/3.0;
vec3 tc = vec3(0.0, 0.0, 0.0);
if (lum < 0.5) tc = mix(colors[0], colors[1], lum/0.5);
else tc = mix(colors[1], colors[2], (lum - 0.5)/0.5);
gl_FragColor = vec4(tc, 1.0);
}

View File

@ -0,0 +1,42 @@
#version 120
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
float offset = 0.0;
float frequency = 450.0/3.0;
uniform float time;
void main()
{
/*
// Scanlines method 1
float tval = 0; //time
vec2 uv = 0.5 + (fragTexCoord - 0.5)*(0.9 + 0.01*sin(0.5*tval));
vec4 color = texture2D(texture0, fragTexCoord);
color = clamp(color*0.5 + 0.5*color*color*1.2, 0.0, 1.0);
color *= 0.5 + 0.5*16.0*uv.x*uv.y*(1.0 - uv.x)*(1.0 - uv.y);
color *= vec4(0.8, 1.0, 0.7, 1);
color *= 0.9 + 0.1*sin(10.0*tval + uv.y*1000.0);
color *= 0.97 + 0.03*sin(110.0*tval);
fragColor = color;
*/
// Scanlines method 2
float globalPos = (fragTexCoord.y + offset) * frequency;
float wavePos = cos((fract(globalPos) - 0.5)*3.14);
vec4 color = texture2D(texture0, fragTexCoord);
gl_FragColor = mix(vec4(0.0, 0.3, 0.0, 0.0), color, wavePos);
}

View File

@ -0,0 +1,38 @@
#version 120
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
vec2 resolution = vec2(800.0, 450.0);
void main()
{
float x = 1.0/resolution.x;
float y = 1.0/resolution.y;
vec4 horizEdge = vec4(0.0);
horizEdge -= texture2D(texture0, vec2(fragTexCoord.x - x, fragTexCoord.y - y))*1.0;
horizEdge -= texture2D(texture0, vec2(fragTexCoord.x - x, fragTexCoord.y ))*2.0;
horizEdge -= texture2D(texture0, vec2(fragTexCoord.x - x, fragTexCoord.y + y))*1.0;
horizEdge += texture2D(texture0, vec2(fragTexCoord.x + x, fragTexCoord.y - y))*1.0;
horizEdge += texture2D(texture0, vec2(fragTexCoord.x + x, fragTexCoord.y ))*2.0;
horizEdge += texture2D(texture0, vec2(fragTexCoord.x + x, fragTexCoord.y + y))*1.0;
vec4 vertEdge = vec4(0.0);
vertEdge -= texture2D(texture0, vec2(fragTexCoord.x - x, fragTexCoord.y - y))*1.0;
vertEdge -= texture2D(texture0, vec2(fragTexCoord.x , fragTexCoord.y - y))*2.0;
vertEdge -= texture2D(texture0, vec2(fragTexCoord.x + x, fragTexCoord.y - y))*1.0;
vertEdge += texture2D(texture0, vec2(fragTexCoord.x - x, fragTexCoord.y + y))*1.0;
vertEdge += texture2D(texture0, vec2(fragTexCoord.x , fragTexCoord.y + y))*2.0;
vertEdge += texture2D(texture0, vec2(fragTexCoord.x + x, fragTexCoord.y + y))*1.0;
vec3 edge = sqrt((horizEdge.rgb*horizEdge.rgb) + (vertEdge.rgb*vertEdge.rgb));
gl_FragColor = vec4(edge, texture2D(texture0, fragTexCoord).a);
}

View File

@ -0,0 +1,44 @@
#version 120
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
// NOTE: Render size values should be passed from code
const float renderWidth = 800;
const float renderHeight = 450;
float radius = 250.0;
float angle = 0.8;
uniform vec2 center;
void main()
{
vec2 texSize = vec2(renderWidth, renderHeight);
vec2 tc = fragTexCoord*texSize;
tc -= center;
float dist = length(tc);
if (dist < radius)
{
float percent = (radius - dist)/radius;
float theta = percent*percent*angle*8.0;
float s = sin(theta);
float c = cos(theta);
tc = vec2(dot(tc, vec2(c, -s)), dot(tc, vec2(s, c)));
}
tc += center;
vec4 color = texture2D(texture0, tc/texSize)*colDiffuse*fragColor;;
gl_FragColor = vec4(color.rgb, 1.0);;
}

View File

@ -0,0 +1,19 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
void main()
{
vec4 texelColor = texture(texture0, fragTexCoord);
if (texelColor.a == 0.0) discard;
finalColor = texelColor * fragColor * colDiffuse;
}

View File

@ -0,0 +1,25 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor = texture(texture0, fragTexCoord);
// NOTE: Implement here your fragment shader code
finalColor = texelColor*colDiffuse;
}

View File

@ -0,0 +1,26 @@
#version 330
// Input vertex attributes
in vec3 vertexPosition;
in vec2 vertexTexCoord;
in vec3 vertexNormal;
in vec4 vertexColor;
// Input uniform values
uniform mat4 mvp;
// Output vertex attributes (to fragment shader)
out vec2 fragTexCoord;
out vec4 fragColor;
// NOTE: Add here your custom variables
void main()
{
// Send vertex attributes to fragment shader
fragTexCoord = vertexTexCoord;
fragColor = vertexColor;
// Calculate final vertex position
gl_Position = mvp*vec4(vertexPosition, 1.0);
}

View File

@ -0,0 +1,40 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
const vec2 size = vec2(800, 450); // Framebuffer size
const float samples = 5.0; // Pixels per axis; higher = bigger glow, worse performance
const float quality = 2.5; // Defines size factor: Lower = smaller glow, better quality
void main()
{
vec4 sum = vec4(0);
vec2 sizeFactor = vec2(1)/size*quality;
// Texel color fetching from texture sampler
vec4 source = texture(texture0, fragTexCoord);
const int range = 2; // should be = (samples - 1)/2;
for (int x = -range; x <= range; x++)
{
for (int y = -range; y <= range; y++)
{
sum += texture(texture0, fragTexCoord + vec2(x, y)*sizeFactor);
}
}
// Calculate final fragment color
finalColor = ((sum/(samples*samples)) + source)*colDiffuse;
}

View File

@ -0,0 +1,35 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
// NOTE: Render size values must be passed from code
const float renderWidth = 800;
const float renderHeight = 450;
float offset[3] = float[](0.0, 1.3846153846, 3.2307692308);
float weight[3] = float[](0.2270270270, 0.3162162162, 0.0702702703);
void main()
{
// Texel color fetching from texture sampler
vec3 texelColor = texture(texture0, fragTexCoord).rgb*weight[0];
for (int i = 1; i < 3; i++)
{
texelColor += texture(texture0, fragTexCoord + vec2(offset[i])/renderWidth, 0.0).rgb*weight[i];
texelColor += texture(texture0, fragTexCoord - vec2(offset[i])/renderWidth, 0.0).rgb*weight[i];
}
finalColor = vec4(texelColor, 1.0);
}

View File

@ -0,0 +1,27 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec3 vertexPos;
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform sampler2D texture1;
uniform vec4 colDiffuse;
uniform float divider = 0.5;
out vec4 finalColor;
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor0 = texture(texture0, fragTexCoord);
vec4 texelColor1 = texture(texture1, fragTexCoord);
float x = fract(fragTexCoord.s);
float final = smoothstep(divider - 0.1, divider + 0.1, x);
finalColor = mix(texelColor0, texelColor1, final);
}

View File

@ -0,0 +1,48 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
float hatchOffsetY = 5.0;
float lumThreshold01 = 0.9;
float lumThreshold02 = 0.7;
float lumThreshold03 = 0.5;
float lumThreshold04 = 0.3;
void main()
{
vec3 tc = vec3(1.0, 1.0, 1.0);
float lum = length(texture(texture0, fragTexCoord).rgb);
if (lum < lumThreshold01)
{
if (mod(gl_FragCoord.x + gl_FragCoord.y, 10.0) == 0.0) tc = vec3(0.0, 0.0, 0.0);
}
if (lum < lumThreshold02)
{
if (mod(gl_FragCoord.x - gl_FragCoord.y, 10.0) == 0.0) tc = vec3(0.0, 0.0, 0.0);
}
if (lum < lumThreshold03)
{
if (mod(gl_FragCoord.x + gl_FragCoord.y - hatchOffsetY, 10.0) == 0.0) tc = vec3(0.0, 0.0, 0.0);
}
if (lum < lumThreshold04)
{
if (mod(gl_FragCoord.x - gl_FragCoord.y - hatchOffsetY, 10.0) == 0.0) tc = vec3(0.0, 0.0, 0.0);
}
finalColor = vec4(tc, 1.0);
}

View File

@ -0,0 +1,59 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
// NOTE: Render size values must be passed from code
const float renderWidth = 800.0;
const float renderHeight = 450.0;
float stitchingSize = 6.0;
uniform int invert = 0;
vec4 PostFX(sampler2D tex, vec2 uv)
{
vec4 c = vec4(0.0);
float size = stitchingSize;
vec2 cPos = uv * vec2(renderWidth, renderHeight);
vec2 tlPos = floor(cPos / vec2(size, size));
tlPos *= size;
int remX = int(mod(cPos.x, size));
int remY = int(mod(cPos.y, size));
if (remX == 0 && remY == 0) tlPos = cPos;
vec2 blPos = tlPos;
blPos.y += (size - 1.0);
if ((remX == remY) || (((int(cPos.x) - int(blPos.x)) == (int(blPos.y) - int(cPos.y)))))
{
if (invert == 1) c = vec4(0.2, 0.15, 0.05, 1.0);
else c = texture(tex, tlPos * vec2(1.0/renderWidth, 1.0/renderHeight)) * 1.4;
}
else
{
if (invert == 1) c = texture(tex, tlPos * vec2(1.0/renderWidth, 1.0/renderHeight)) * 1.4;
else c = vec4(0.0, 0.0, 0.0, 1.0);
}
return c;
}
void main()
{
vec3 tc = PostFX(texture0, fragTexCoord).rgb;
finalColor = vec4(tc, 1.0);
}

View File

@ -0,0 +1,30 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec3 fragPosition;
// Input uniform values
uniform sampler2D equirectangularMap;
// Output fragment color
out vec4 finalColor;
vec2 SampleSphericalMap(vec3 v)
{
vec2 uv = vec2(atan(v.z, v.x), asin(v.y));
uv *= vec2(0.1591, 0.3183);
uv += 0.5;
return uv;
}
void main()
{
// Normalize local position
vec2 uv = SampleSphericalMap(normalize(fragPosition));
// Fetch color from texture map
vec3 color = texture(equirectangularMap, uv).rgb;
// Calculate final fragment color
finalColor = vec4(color, 1.0);
}

View File

@ -0,0 +1,20 @@
#version 330
// Input vertex attributes
in vec3 vertexPosition;
// Input uniform values
uniform mat4 matProjection;
uniform mat4 matView;
// Output vertex attributes (to fragment shader)
out vec3 fragPosition;
void main()
{
// Calculate fragment position based on model transformations
fragPosition = vertexPosition;
// Calculate final vertex position
gl_Position = matProjection*matView*vec4(vertexPosition, 1.0);
}

View File

@ -0,0 +1,61 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Output fragment color
out vec4 finalColor;
// Custom variables
#define PI 3.14159265358979323846
uniform float uTime = 0.0;
float divisions = 5.0;
float angle = 0.0;
vec2 VectorRotateTime(vec2 v, float speed)
{
float time = uTime*speed;
float localTime = fract(time); // The time domain this works on is 1 sec.
if ((localTime >= 0.0) && (localTime < 0.25)) angle = 0.0;
else if ((localTime >= 0.25) && (localTime < 0.50)) angle = PI/4*sin(2*PI*localTime - PI/2);
else if ((localTime >= 0.50) && (localTime < 0.75)) angle = PI*0.25;
else if ((localTime >= 0.75) && (localTime < 1.00)) angle = PI/4*sin(2*PI*localTime);
// Rotate vector by angle
v -= 0.5;
v = mat2(cos(angle), -sin(angle), sin(angle), cos(angle))*v;
v += 0.5;
return v;
}
float Rectangle(in vec2 st, in float size, in float fill)
{
float roundSize = 0.5 - size/2.0;
float left = step(roundSize, st.x);
float top = step(roundSize, st.y);
float bottom = step(roundSize, 1.0 - st.y);
float right = step(roundSize, 1.0 - st.x);
return (left*bottom*right*top)*fill;
}
void main()
{
vec2 fragPos = fragTexCoord;
fragPos.xy += uTime/9.0;
fragPos *= divisions;
vec2 ipos = floor(fragPos); // Get the integer coords
vec2 fpos = fract(fragPos); // Get the fractional coords
fpos = VectorRotateTime(fpos, 0.2);
float alpha = Rectangle(fpos, 0.216, 1.0);
vec3 color = vec3(0.3, 0.3, 0.3);
finalColor = vec4(color, alpha);
}

View File

@ -0,0 +1,27 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0; // Depth texture
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
void main()
{
float zNear = 0.01; // camera z near
float zFar = 10.0; // camera z far
float z = texture(texture0, fragTexCoord).x;
// Linearize depth value
float depth = (2.0*zNear)/(zFar + zNear - z*(zFar - zNear));
// Calculate final fragment color
finalColor = vec4(depth, depth, depth, 1.0f);
}

View File

@ -0,0 +1,56 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
// Input uniform values
uniform sampler2D texture0;
// Output fragment color
out vec4 finalColor;
// NOTE: Default parameters for Oculus Rift DK2 device
const vec2 LeftLensCenter = vec2(0.2863248, 0.5);
const vec2 RightLensCenter = vec2(0.7136753, 0.5);
const vec2 LeftScreenCenter = vec2(0.25, 0.5);
const vec2 RightScreenCenter = vec2(0.75, 0.5);
const vec2 Scale = vec2(0.25, 0.45);
const vec2 ScaleIn = vec2(4.0, 2.5);
const vec4 HmdWarpParam = vec4(1.0, 0.22, 0.24, 0.0);
const vec4 ChromaAbParam = vec4(0.996, -0.004, 1.014, 0.0);
void main()
{
// The following two variables need to be set per eye
vec2 LensCenter = fragTexCoord.x < 0.5 ? LeftLensCenter : RightLensCenter;
vec2 ScreenCenter = fragTexCoord.x < 0.5 ? LeftScreenCenter : RightScreenCenter;
// Scales input texture coordinates for distortion: vec2 HmdWarp(vec2 fragTexCoord, vec2 LensCenter)
vec2 theta = (fragTexCoord - LensCenter)*ScaleIn; // Scales to [-1, 1]
float rSq = theta.x*theta.x + theta.y*theta.y;
vec2 theta1 = theta*(HmdWarpParam.x + HmdWarpParam.y*rSq + HmdWarpParam.z*rSq*rSq + HmdWarpParam.w*rSq*rSq*rSq);
//vec2 tc = LensCenter + Scale*theta1;
// Detect whether blue texture coordinates are out of range since these will scaled out the furthest
vec2 thetaBlue = theta1*(ChromaAbParam.z + ChromaAbParam.w*rSq);
vec2 tcBlue = LensCenter + Scale*thetaBlue;
if (any(bvec2(clamp(tcBlue, ScreenCenter - vec2(0.25, 0.5), ScreenCenter + vec2(0.25, 0.5)) - tcBlue))) finalColor = vec4(0.0, 0.0, 0.0, 1.0);
else
{
// Do blue texture lookup
float blue = texture(texture0, tcBlue).b;
// Do green lookup (no scaling)
vec2 tcGreen = LensCenter + Scale*theta1;
float green = texture(texture0, tcGreen).g;
// Do red scale and lookup
vec2 thetaRed = theta1*(ChromaAbParam.x + ChromaAbParam.y*rSq);
vec2 tcRed = LensCenter + Scale*thetaRed;
float red = texture(texture0, tcRed).r;
finalColor = vec4(red, green, blue, 1.0);
}
}

View File

@ -0,0 +1,53 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
uniform vec2 leftLensCenter = vec2(0.288, 0.5);
uniform vec2 rightLensCenter = vec2(0.712, 0.5);
uniform vec2 leftScreenCenter = vec2(0.25, 0.5);
uniform vec2 rightScreenCenter = vec2(0.75, 0.5);
uniform vec2 scale = vec2(0.25, 0.45);
uniform vec2 scaleIn = vec2(4, 2.2222);
uniform vec4 deviceWarpParam = vec4(1, 0.22, 0.24, 0);
uniform vec4 chromaAbParam = vec4(0.996, -0.004, 1.014, 0.0);
void main()
{
// Compute lens distortion
vec2 lensCenter = fragTexCoord.x < 0.5? leftLensCenter : rightLensCenter;
vec2 screenCenter = fragTexCoord.x < 0.5? leftScreenCenter : rightScreenCenter;
vec2 theta = (fragTexCoord - lensCenter)*scaleIn;
float rSq = theta.x*theta.x + theta.y*theta.y;
vec2 theta1 = theta*(deviceWarpParam.x + deviceWarpParam.y*rSq + deviceWarpParam.z*rSq*rSq + deviceWarpParam.w*rSq*rSq*rSq);
vec2 thetaBlue = theta1*(chromaAbParam.z + chromaAbParam.w*rSq);
vec2 tcBlue = lensCenter + scale*thetaBlue;
if (any(bvec2(clamp(tcBlue, screenCenter - vec2(0.25, 0.5), screenCenter + vec2(0.25, 0.5)) - tcBlue)))
{
// Set black fragment for everything outside the lens border
finalColor = vec4(0.0, 0.0, 0.0, 1.0);
}
else
{
// Compute color chroma aberration
float blue = texture(texture0, tcBlue).b;
vec2 tcGreen = lensCenter + scale*theta1;
float green = texture(texture0, tcGreen).g;
vec2 thetaRed = theta1*(chromaAbParam.x + chromaAbParam.y*rSq);
vec2 tcRed = lensCenter + scale*thetaRed;
float red = texture(texture0, tcRed).r;
finalColor = vec4(red, green, blue, 1.0);
}
}

View File

@ -0,0 +1,34 @@
#version 330
in vec2 fragTexCoord;
out vec4 fragColor;
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
void main()
{
vec4 color = texture(texture0, fragTexCoord);
color += texture(texture0, fragTexCoord + 0.001);
color += texture(texture0, fragTexCoord + 0.003);
color += texture(texture0, fragTexCoord + 0.005);
color += texture(texture0, fragTexCoord + 0.007);
color += texture(texture0, fragTexCoord + 0.009);
color += texture(texture0, fragTexCoord + 0.011);
color += texture(texture0, fragTexCoord - 0.001);
color += texture(texture0, fragTexCoord - 0.003);
color += texture(texture0, fragTexCoord - 0.005);
color += texture(texture0, fragTexCoord - 0.007);
color += texture(texture0, fragTexCoord - 0.009);
color += texture(texture0, fragTexCoord - 0.011);
color.rgb = vec3((color.r + color.g + color.b)/3.0);
color = color/9.5;
fragColor = color;
}

View File

@ -0,0 +1,59 @@
#version 330
/*************************************************************************************
The Sieve of Eratosthenes -- a simple shader by ProfJski
An early prime number sieve: https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
The screen is divided into a square grid of boxes, each representing an integer value.
Each integer is tested to see if it is a prime number. Primes are colored white.
Non-primes are colored with a color that indicates the smallest factor which evenly divdes our integer.
You can change the scale variable to make a larger or smaller grid.
Total number of integers displayed = scale squared, so scale = 100 tests the first 10,000 integers.
WARNING: If you make scale too large, your GPU may bog down!
***************************************************************************************/
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Output fragment color
out vec4 finalColor;
// Make a nice spectrum of colors based on counter and maxSize
vec4 Colorizer(float counter, float maxSize)
{
float red = 0.0, green = 0.0, blue = 0.0;
float normsize = counter/maxSize;
red = smoothstep(0.3, 0.7, normsize);
green = sin(3.14159*normsize);
blue = 1.0 - smoothstep(0.0, 0.4, normsize);
return vec4(0.8*red, 0.8*green, 0.8*blue, 1.0);
}
void main()
{
vec4 color = vec4(1.0);
float scale = 1000.0; // Makes 100x100 square grid. Change this variable to make a smaller or larger grid.
int value = int(scale*floor(fragTexCoord.y*scale)+floor(fragTexCoord.x*scale)); // Group pixels into boxes representing integer values
if ((value == 0) || (value == 1) || (value == 2)) finalColor = vec4(1.0);
else
{
for (int i = 2; (i < max(2, sqrt(value) + 1)); i++)
{
if ((value - i*floor(float(value)/float(i))) == 0)
{
color = Colorizer(float(i), scale);
//break; // Uncomment to color by the largest factor instead
}
}
finalColor = color;
}
}

View File

@ -0,0 +1,40 @@
#version 330
in vec2 fragTexCoord;
out vec4 fragColor;
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// NOTE: Add here your custom variables
const float PI = 3.1415926535;
void main()
{
float aperture = 178.0;
float apertureHalf = 0.5 * aperture * (PI / 180.0);
float maxFactor = sin(apertureHalf);
vec2 uv = vec2(0);
vec2 xy = 2.0 * fragTexCoord.xy - 1.0;
float d = length(xy);
if (d < (2.0 - maxFactor))
{
d = length(xy * maxFactor);
float z = sqrt(1.0 - d * d);
float r = atan(d, z) / PI;
float phi = atan(xy.y, xy.x);
uv.x = r * cos(phi) + 0.5;
uv.y = r * sin(phi) + 0.5;
}
else
{
uv = fragTexCoord.xy;
}
fragColor = texture(texture0, uv);
}

View File

@ -0,0 +1,95 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
in vec3 fragPosition;
in vec3 fragNormal;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
#define MAX_LIGHTS 4
#define LIGHT_DIRECTIONAL 0
#define LIGHT_POINT 1
struct MaterialProperty {
vec3 color;
int useSampler;
sampler2D sampler;
};
struct Light {
int enabled;
int type;
vec3 position;
vec3 target;
vec4 color;
};
// Input lighting values
uniform Light lights[MAX_LIGHTS];
uniform vec4 ambient;
uniform vec3 viewPos;
uniform float fogDensity;
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor = texture(texture0, fragTexCoord);
vec3 lightDot = vec3(0.0);
vec3 normal = normalize(fragNormal);
vec3 viewD = normalize(viewPos - fragPosition);
vec3 specular = vec3(0.0);
// NOTE: Implement here your fragment shader code
for (int i = 0; i < MAX_LIGHTS; i++)
{
if (lights[i].enabled == 1)
{
vec3 light = vec3(0.0);
if (lights[i].type == LIGHT_DIRECTIONAL) light = -normalize(lights[i].target - lights[i].position);
if (lights[i].type == LIGHT_POINT) light = normalize(lights[i].position - fragPosition);
float NdotL = max(dot(normal, light), 0.0);
lightDot += lights[i].color.rgb*NdotL;
float specCo = 0.0;
if (NdotL > 0.0) specCo = pow(max(0.0, dot(viewD, reflect(-(light), normal))), 16.0); // Shine: 16.0
specular += specCo;
}
}
finalColor = (texelColor*((colDiffuse + vec4(specular,1))*vec4(lightDot, 1.0)));
finalColor += texelColor*(ambient/10.0);
// Gamma correction
finalColor = pow(finalColor, vec4(1.0/2.2));
// Fog calculation
float dist = length(viewPos - fragPosition);
// these could be parameters...
const vec4 fogColor = vec4(0.5, 0.5, 0.5, 1.0);
//const float fogDensity = 0.16;
// Exponential fog
float fogFactor = 1.0/exp((dist*fogDensity)*(dist*fogDensity));
// Linear fog (less nice)
//const float fogStart = 2.0;
//const float fogEnd = 10.0;
//float fogFactor = (fogEnd - dist)/(fogEnd - fogStart);
fogFactor = clamp(fogFactor, 0.0, 1.0);
finalColor = mix(fogColor, finalColor, fogFactor);
}

View File

@ -0,0 +1,26 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor = texture(texture0, fragTexCoord)*colDiffuse*fragColor;
// Convert texel color to grayscale using NTSC conversion weights
float gray = dot(texelColor.rgb, vec3(0.299, 0.587, 0.114));
// Calculate final fragment color
finalColor = vec4(gray, gray, gray, texelColor.a);
}

View File

@ -0,0 +1,14 @@
#version 330
in vec2 fragTexCoord;
in vec4 fragColor;
uniform sampler2D texture0;
uniform vec4 colDiffuse;
void main()
{
vec4 texelColor = texture2D(texture0, fragTexCoord);
gl_FragColor = texelColor*colDiffuse*fragColor;
gl_FragDepth = gl_FragCoord.z;
}

View File

@ -0,0 +1,284 @@
# version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Custom Input Uniform
uniform vec3 camPos;
uniform vec3 camDir;
uniform vec2 screenCenter;
#define ZERO 0
// https://learnopengl.com/Advanced-OpenGL/Depth-testing
float CalcDepth(in vec3 rd, in float Idist){
float local_z = dot(normalize(camDir),rd)*Idist;
return (1.0/(local_z) - 1.0/0.01)/(1.0/1000.0 -1.0/0.01);
}
// https://iquilezles.org/articles/distfunctions/
float sdHorseshoe( in vec3 p, in vec2 c, in float r, in float le, vec2 w )
{
p.x = abs(p.x);
float l = length(p.xy);
p.xy = mat2(-c.x, c.y,
c.y, c.x)*p.xy;
p.xy = vec2((p.y>0.0 || p.x>0.0)?p.x:l*sign(-c.x),
(p.x>0.0)?p.y:l );
p.xy = vec2(p.x,abs(p.y-r))-vec2(le,0.0);
vec2 q = vec2(length(max(p.xy,0.0)) + min(0.0,max(p.x,p.y)),p.z);
vec2 d = abs(q) - w;
return min(max(d.x,d.y),0.0) + length(max(d,0.0));
}
// r = sphere's radius
// h = cutting's plane's position
// t = thickness
float sdSixWayCutHollowSphere( vec3 p, float r, float h, float t )
{
// Six way symetry Transformation
vec3 ap = abs(p);
if(ap.x < max(ap.y, ap.z)){
if(ap.y < ap.z) ap.xz = ap.zx;
else ap.xy = ap.yx;
}
vec2 q = vec2( length(ap.yz), ap.x );
float w = sqrt(r*r-h*h);
return ((h*q.x<w*q.y) ? length(q-vec2(w,h)) :
abs(length(q)-r) ) - t;
}
// https://iquilezles.org/articles/boxfunctions
vec2 iBox( in vec3 ro, in vec3 rd, in vec3 rad )
{
vec3 m = 1.0/rd;
vec3 n = m*ro;
vec3 k = abs(m)*rad;
vec3 t1 = -n - k;
vec3 t2 = -n + k;
return vec2( max( max( t1.x, t1.y ), t1.z ),
min( min( t2.x, t2.y ), t2.z ) );
}
vec2 opU( vec2 d1, vec2 d2 )
{
return (d1.x<d2.x) ? d1 : d2;
}
vec2 map( in vec3 pos ){
vec2 res = vec2( sdHorseshoe( pos-vec3(-1.0,0.08, 1.0), vec2(cos(1.3),sin(1.3)), 0.2, 0.3, vec2(0.03,0.5) ), 11.5 ) ;
res = opU(res, vec2( sdSixWayCutHollowSphere( pos-vec3(0.0, 1.0, 0.0), 4.0, 3.5, 0.5 ), 4.5 )) ;
return res;
}
// https://www.shadertoy.com/view/Xds3zN
vec2 raycast( in vec3 ro, in vec3 rd ){
vec2 res = vec2(-1.0,-1.0);
float tmin = 1.0;
float tmax = 20.0;
// raytrace floor plane
float tp1 = (-ro.y)/rd.y;
if( tp1>0.0 )
{
tmax = min( tmax, tp1 );
res = vec2( tp1, 1.0 );
}
float t = tmin;
for( int i=0; i<70 ; i++ )
{
if(t>tmax) break;
vec2 h = map( ro+rd*t );
if( abs(h.x)<(0.0001*t) )
{
res = vec2(t,h.y);
break;
}
t += h.x;
}
return res;
}
// https://iquilezles.org/articles/rmshadows
float calcSoftshadow( in vec3 ro, in vec3 rd, in float mint, in float tmax )
{
// bounding volume
float tp = (0.8-ro.y)/rd.y; if( tp>0.0 ) tmax = min( tmax, tp );
float res = 1.0;
float t = mint;
for( int i=ZERO; i<24; i++ )
{
float h = map( ro + rd*t ).x;
float s = clamp(8.0*h/t,0.0,1.0);
res = min( res, s );
t += clamp( h, 0.01, 0.2 );
if( res<0.004 || t>tmax ) break;
}
res = clamp( res, 0.0, 1.0 );
return res*res*(3.0-2.0*res);
}
// https://iquilezles.org/articles/normalsSDF
vec3 calcNormal( in vec3 pos )
{
vec2 e = vec2(1.0,-1.0)*0.5773*0.0005;
return normalize( e.xyy*map( pos + e.xyy ).x +
e.yyx*map( pos + e.yyx ).x +
e.yxy*map( pos + e.yxy ).x +
e.xxx*map( pos + e.xxx ).x );
}
// https://iquilezles.org/articles/nvscene2008/rwwtt.pdf
float calcAO( in vec3 pos, in vec3 nor )
{
float occ = 0.0;
float sca = 1.0;
for( int i=ZERO; i<5; i++ )
{
float h = 0.01 + 0.12*float(i)/4.0;
float d = map( pos + h*nor ).x;
occ += (h-d)*sca;
sca *= 0.95;
if( occ>0.35 ) break;
}
return clamp( 1.0 - 3.0*occ, 0.0, 1.0 ) * (0.5+0.5*nor.y);
}
// https://iquilezles.org/articles/checkerfiltering
float checkersGradBox( in vec2 p )
{
// filter kernel
vec2 w = fwidth(p) + 0.001;
// analytical integral (box filter)
vec2 i = 2.0*(abs(fract((p-0.5*w)*0.5)-0.5)-abs(fract((p+0.5*w)*0.5)-0.5))/w;
// xor pattern
return 0.5 - 0.5*i.x*i.y;
}
// https://www.shadertoy.com/view/tdS3DG
vec4 render( in vec3 ro, in vec3 rd)
{
// background
vec3 col = vec3(0.7, 0.7, 0.9) - max(rd.y,0.0)*0.3;
// raycast scene
vec2 res = raycast(ro,rd);
float t = res.x;
float m = res.y;
if( m>-0.5 )
{
vec3 pos = ro + t*rd;
vec3 nor = (m<1.5) ? vec3(0.0,1.0,0.0) : calcNormal( pos );
vec3 ref = reflect( rd, nor );
// material
col = 0.2 + 0.2*sin( m*2.0 + vec3(0.0,1.0,2.0) );
float ks = 1.0;
if( m<1.5 )
{
float f = checkersGradBox( 3.0*pos.xz);
col = 0.15 + f*vec3(0.05);
ks = 0.4;
}
// lighting
float occ = calcAO( pos, nor );
vec3 lin = vec3(0.0);
// sun
{
vec3 lig = normalize( vec3(-0.5, 0.4, -0.6) );
vec3 hal = normalize( lig-rd );
float dif = clamp( dot( nor, lig ), 0.0, 1.0 );
//if( dif>0.0001 )
dif *= calcSoftshadow( pos, lig, 0.02, 2.5 );
float spe = pow( clamp( dot( nor, hal ), 0.0, 1.0 ),16.0);
spe *= dif;
spe *= 0.04+0.96*pow(clamp(1.0-dot(hal,lig),0.0,1.0),5.0);
//spe *= 0.04+0.96*pow(clamp(1.0-sqrt(0.5*(1.0-dot(rd,lig))),0.0,1.0),5.0);
lin += col*2.20*dif*vec3(1.30,1.00,0.70);
lin += 5.00*spe*vec3(1.30,1.00,0.70)*ks;
}
// sky
{
float dif = sqrt(clamp( 0.5+0.5*nor.y, 0.0, 1.0 ));
dif *= occ;
float spe = smoothstep( -0.2, 0.2, ref.y );
spe *= dif;
spe *= 0.04+0.96*pow(clamp(1.0+dot(nor,rd),0.0,1.0), 5.0 );
//if( spe>0.001 )
spe *= calcSoftshadow( pos, ref, 0.02, 2.5 );
lin += col*0.60*dif*vec3(0.40,0.60,1.15);
lin += 2.00*spe*vec3(0.40,0.60,1.30)*ks;
}
// back
{
float dif = clamp( dot( nor, normalize(vec3(0.5,0.0,0.6))), 0.0, 1.0 )*clamp( 1.0-pos.y,0.0,1.0);
dif *= occ;
lin += col*0.55*dif*vec3(0.25,0.25,0.25);
}
// sss
{
float dif = pow(clamp(1.0+dot(nor,rd),0.0,1.0),2.0);
dif *= occ;
lin += col*0.25*dif*vec3(1.00,1.00,1.00);
}
col = lin;
col = mix( col, vec3(0.7,0.7,0.9), 1.0-exp( -0.0001*t*t*t ) );
}
return vec4(vec3( clamp(col,0.0,1.0) ),t);
}
vec3 CalcRayDir(vec2 nCoord){
vec3 horizontal = normalize(cross(camDir,vec3(.0 , 1.0, .0)));
vec3 vertical = normalize(cross(horizontal,camDir));
return normalize(camDir + horizontal*nCoord.x + vertical*nCoord.y);
}
mat3 setCamera()
{
vec3 cw = normalize(camDir);
vec3 cp = vec3(0.0, 1.0 ,0.0);
vec3 cu = normalize( cross(cw,cp) );
vec3 cv = ( cross(cu,cw) );
return mat3( cu, cv, cw );
}
void main()
{
vec2 nCoord = (gl_FragCoord.xy - screenCenter.xy)/screenCenter.y;
mat3 ca = setCamera();
// focal length
float fl = length(camDir);
vec3 rd = ca * normalize( vec3(nCoord,fl) );
vec3 color = vec3(nCoord/2.0 + 0.5, 0.0);
float depth = gl_FragCoord.z;
{
vec4 res = render( camPos - vec3(0.0, 0.0, 0.0) , rd );
color = res.xyz;
depth = CalcDepth(rd,res.w);
}
gl_FragColor = vec4(color , 1.0);
gl_FragDepth = depth;
}

View File

@ -0,0 +1,81 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Output fragment color
out vec4 finalColor;
uniform vec2 screenDims; // Dimensions of the screen
uniform vec2 c; // c.x = real, c.y = imaginary component. Equation done is z^2 + c
uniform vec2 offset; // Offset of the scale.
uniform float zoom; // Zoom of the scale.
const int MAX_ITERATIONS = 255; // Max iterations to do.
// Square a complex number
vec2 ComplexSquare(vec2 z)
{
return vec2(
z.x * z.x - z.y * z.y,
z.x * z.y * 2.0
);
}
// Convert Hue Saturation Value (HSV) color into RGB
vec3 Hsv2rgb(vec3 c)
{
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
}
void main()
{
/**********************************************************************************************
Julia sets use a function z^2 + c, where c is a constant.
This function is iterated until the nature of the point is determined.
If the magnitude of the number becomes greater than 2, then from that point onward
the number will get bigger and bigger, and will never get smaller (tends towards infinity).
2^2 = 4, 4^2 = 8 and so on.
So at 2 we stop iterating.
If the number is below 2, we keep iterating.
But when do we stop iterating if the number is always below 2 (it converges)?
That is what MAX_ITERATIONS is for.
Then we can divide the iterations by the MAX_ITERATIONS value to get a normalized value that we can
then map to a color.
We use dot product (z.x * z.x + z.y * z.y) to determine the magnitude (length) squared.
And once the magnitude squared is > 4, then magnitude > 2 is also true (saves computational power).
*************************************************************************************************/
// The pixel coordinates are scaled so they are on the mandelbrot scale
// NOTE: fragTexCoord already comes as normalized screen coordinates but offset must be normalized before scaling and zoom
vec2 z = vec2((fragTexCoord.x + offset.x/screenDims.x)*2.5/zoom, (fragTexCoord.y + offset.y/screenDims.y)*1.5/zoom);
int iterations = 0;
for (iterations = 0; iterations < MAX_ITERATIONS; iterations++)
{
z = ComplexSquare(z) + c; // Iterate function
if (dot(z, z) > 4.0) break;
}
// Another few iterations decreases errors in the smoothing calculation.
// See http://linas.org/art-gallery/escape/escape.html for more information.
z = ComplexSquare(z) + c;
z = ComplexSquare(z) + c;
// This last part smooths the color (again see link above).
float smoothVal = float(iterations) + 1.0 - (log(log(length(z)))/log(2.0));
// Normalize the value so it is between 0 and 1.
float norm = smoothVal/float(MAX_ITERATIONS);
// If in set, color black. 0.999 allows for some float accuracy error.
if (norm > 0.999) finalColor = vec4(0.0, 0.0, 0.0, 1.0);
else finalColor = vec4(Hsv2rgb(vec3(norm, 1.0, 1.0)), 1.0);
}

View File

@ -0,0 +1,82 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec3 fragPosition;
in vec2 fragTexCoord;
//in vec4 fragColor;
in vec3 fragNormal;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
#define MAX_LIGHTS 4
#define LIGHT_DIRECTIONAL 0
#define LIGHT_POINT 1
struct MaterialProperty {
vec3 color;
int useSampler;
sampler2D sampler;
};
struct Light {
int enabled;
int type;
vec3 position;
vec3 target;
vec4 color;
};
// Input lighting values
uniform Light lights[MAX_LIGHTS];
uniform vec4 ambient;
uniform vec3 viewPos;
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor = texture(texture0, fragTexCoord);
vec3 lightDot = vec3(0.0);
vec3 normal = normalize(fragNormal);
vec3 viewD = normalize(viewPos - fragPosition);
vec3 specular = vec3(0.0);
// NOTE: Implement here your fragment shader code
for (int i = 0; i < MAX_LIGHTS; i++)
{
if (lights[i].enabled == 1)
{
vec3 light = vec3(0.0);
if (lights[i].type == LIGHT_DIRECTIONAL)
{
light = -normalize(lights[i].target - lights[i].position);
}
if (lights[i].type == LIGHT_POINT)
{
light = normalize(lights[i].position - fragPosition);
}
float NdotL = max(dot(normal, light), 0.0);
lightDot += lights[i].color.rgb*NdotL;
float specCo = 0.0;
if (NdotL > 0.0) specCo = pow(max(0.0, dot(viewD, reflect(-(light), normal))), 16.0); // 16 refers to shine
specular += specCo;
}
}
finalColor = (texelColor*((colDiffuse + vec4(specular, 1.0))*vec4(lightDot, 1.0)));
finalColor += texelColor*(ambient/10.0)*colDiffuse;
// Gamma correction
finalColor = pow(finalColor, vec4(1.0/2.2));
}

View File

@ -0,0 +1,32 @@
#version 330
// Input vertex attributes
in vec3 vertexPosition;
in vec2 vertexTexCoord;
in vec3 vertexNormal;
in vec4 vertexColor;
// Input uniform values
uniform mat4 mvp;
uniform mat4 matModel;
uniform mat4 matNormal;
// Output vertex attributes (to fragment shader)
out vec3 fragPosition;
out vec2 fragTexCoord;
out vec4 fragColor;
out vec3 fragNormal;
// NOTE: Add here your custom variables
void main()
{
// Send vertex attributes to fragment shader
fragPosition = vec3(matModel*vec4(vertexPosition, 1.0));
fragTexCoord = vertexTexCoord;
fragColor = vertexColor;
fragNormal = normalize(vec3(matNormal*vec4(vertexNormal, 1.0)));
// Calculate final vertex position
gl_Position = mvp*vec4(vertexPosition, 1.0);
}

View File

@ -0,0 +1,36 @@
#version 330
// Input vertex attributes
in vec3 vertexPosition;
in vec2 vertexTexCoord;
in vec3 vertexNormal;
//in vec4 vertexColor; // Not required
in mat4 instanceTransform;
// Input uniform values
uniform mat4 mvp;
uniform mat4 matNormal;
// Output vertex attributes (to fragment shader)
out vec3 fragPosition;
out vec2 fragTexCoord;
out vec4 fragColor;
out vec3 fragNormal;
// NOTE: Add here your custom variables
void main()
{
// Compute MVP for current instance
mat4 mvpi = mvp*instanceTransform;
// Send vertex attributes to fragment shader
fragPosition = vec3(mvpi*vec4(vertexPosition, 1.0));
fragTexCoord = vertexTexCoord;
//fragColor = vertexColor;
fragNormal = normalize(vec3(matNormal*vec4(vertexNormal, 1.0)));
// Calculate final vertex position
gl_Position = mvpi*vec4(vertexPosition, 1.0);
}

View File

@ -0,0 +1,23 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec2 fragTexCoord2;
in vec3 fragPosition;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform sampler2D texture1;
// Output fragment color
out vec4 finalColor;
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor = texture(texture0, fragTexCoord);
vec4 texelColor2 = texture(texture1, fragTexCoord2);
finalColor = texelColor * texelColor2;
}

View File

@ -0,0 +1,29 @@
#version 330
// Input vertex attributes
in vec3 vertexPosition;
in vec2 vertexTexCoord;
in vec2 vertexTexCoord2;
in vec4 vertexColor;
// Input uniform values
uniform mat4 mvp;
uniform mat4 matModel;
// Output vertex attributes (to fragment shader)
out vec3 fragPosition;
out vec2 fragTexCoord;
out vec2 fragTexCoord2;
out vec4 fragColor;
void main()
{
// Send vertex attributes to fragment shader
fragPosition = vec3(matModel*vec4(vertexPosition, 1.0));
fragTexCoord = vertexTexCoord;
fragTexCoord2 = vertexTexCoord2;
fragColor = vertexColor;
// Calculate final vertex position
gl_Position = mvp*vec4(vertexPosition, 1.0);
}

View File

@ -0,0 +1,22 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform sampler2D mask;
uniform int frame;
// Output fragment color
out vec4 finalColor;
void main()
{
vec4 maskColour = texture(mask, fragTexCoord + vec2(sin(-frame/150.0)/10.0, cos(-frame/170.0)/10.0));
if (maskColour.r < 0.25) discard;
vec4 texelColor = texture(texture0, fragTexCoord + vec2(sin(frame/90.0)/8.0, cos(frame/60.0)/8.0));
finalColor = texelColor*maskColour;
}

View File

@ -0,0 +1,35 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
uniform vec2 textureSize;
uniform float outlineSize;
uniform vec4 outlineColor;
// Output fragment color
out vec4 finalColor;
void main()
{
vec4 texel = texture(texture0, fragTexCoord); // Get texel color
vec2 texelScale = vec2(0.0);
texelScale.x = outlineSize/textureSize.x;
texelScale.y = outlineSize/textureSize.y;
// We sample four corner texels, but only for the alpha channel (this is for the outline)
vec4 corners = vec4(0.0);
corners.x = texture(texture0, fragTexCoord + vec2(texelScale.x, texelScale.y)).a;
corners.y = texture(texture0, fragTexCoord + vec2(texelScale.x, -texelScale.y)).a;
corners.z = texture(texture0, fragTexCoord + vec2(-texelScale.x, texelScale.y)).a;
corners.w = texture(texture0, fragTexCoord + vec2(-texelScale.x, -texelScale.y)).a;
float outline = min(dot(corners, vec4(1.0)), 1.0);
vec4 color = mix(vec4(0.0), outlineColor, outline);
finalColor = mix(color, texel, texel.a);
}

View File

@ -0,0 +1,26 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
void main()
{
// To show overdraw, we just render all the fragments
// with a solid color and some transparency
// NOTE: This is not a postpro render,
// it will only render all screen texture in a plain color
finalColor = vec4(1.0, 0.0, 0.0, 0.2);
}

View File

@ -0,0 +1,30 @@
#version 330
const int colors = 8;
// Input fragment attributes (from fragment shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform ivec3 palette[colors];
// Output fragment color
out vec4 finalColor;
void main()
{
// Texel color fetching from texture sampler
vec4 texelColor = texture(texture0, fragTexCoord)*fragColor;
// Convert the (normalized) texel color RED component (GB would work, too)
// to the palette index by scaling up from [0, 1] to [0, 255].
int index = int(texelColor.r*255.0);
ivec3 color = palette[index];
// Calculate final fragment color. Note that the palette color components
// are defined in the range [0, 255] and need to be normalized to [0, 1]
// for OpenGL to work.
finalColor = vec4(color/255.0, texelColor.a);
}

View File

@ -0,0 +1,33 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
// NOTE: Render size values must be passed from code
const float renderWidth = 800;
const float renderHeight = 450;
uniform float pixelWidth = 5.0;
uniform float pixelHeight = 5.0;
void main()
{
float dx = pixelWidth*(1.0/renderWidth);
float dy = pixelHeight*(1.0/renderHeight);
vec2 coord = vec2(dx*floor(fragTexCoord.x/dx), dy*floor(fragTexCoord.y/dy));
vec3 tc = texture(texture0, coord).rgb;
finalColor = vec4(tc, 1.0);
}

View File

@ -0,0 +1,31 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
float gamma = 0.6;
float numColors = 8.0;
void main()
{
// Texel color fetching from texture sampler
vec3 texelColor = texture(texture0, fragTexCoord.xy).rgb;
texelColor = pow(texelColor, vec3(gamma, gamma, gamma));
texelColor = texelColor*numColors;
texelColor = floor(texelColor);
texelColor = texelColor/numColors;
texelColor = pow(texelColor, vec3(1.0/gamma));
finalColor = vec4(texelColor, 1.0);
}

View File

@ -0,0 +1,32 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
void main()
{
// Texel color fetching from texture sampler
vec3 texelColor = texture(texture0, fragTexCoord).rgb;
vec3 colors[3];
colors[0] = vec3(0.0, 0.0, 1.0);
colors[1] = vec3(1.0, 1.0, 0.0);
colors[2] = vec3(1.0, 0.0, 0.0);
float lum = (texelColor.r + texelColor.g + texelColor.b)/3.0;
int ix = (lum < 0.5)? 0:1;
vec3 tc = mix(colors[ix], colors[ix + 1], (lum - float(ix)*0.5)/0.5);
finalColor = vec4(tc, 1.0);
}

View File

@ -0,0 +1,430 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Output fragment color
out vec4 finalColor;
uniform vec3 viewEye;
uniform vec3 viewCenter;
uniform float runTime;
uniform vec2 resolution;
// The MIT License
// Copyright © 2013 Inigo Quilez
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// A list of useful distance function to simple primitives, and an example on how to
// do some interesting boolean operations, repetition and displacement.
//
// More info here: http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
#define AA 1 // make this 1 is your machine is too slow
//------------------------------------------------------------------
float sdPlane( vec3 p )
{
return p.y;
}
float sdSphere( vec3 p, float s )
{
return length(p)-s;
}
float sdBox( vec3 p, vec3 b )
{
vec3 d = abs(p) - b;
return min(max(d.x,max(d.y,d.z)),0.0) + length(max(d,0.0));
}
float sdEllipsoid( in vec3 p, in vec3 r )
{
return (length( p/r ) - 1.0) * min(min(r.x,r.y),r.z);
}
float udRoundBox( vec3 p, vec3 b, float r )
{
return length(max(abs(p)-b,0.0))-r;
}
float sdTorus( vec3 p, vec2 t )
{
return length( vec2(length(p.xz)-t.x,p.y) )-t.y;
}
float sdHexPrism( vec3 p, vec2 h )
{
vec3 q = abs(p);
#if 0
return max(q.z-h.y,max((q.x*0.866025+q.y*0.5),q.y)-h.x);
#else
float d1 = q.z-h.y;
float d2 = max((q.x*0.866025+q.y*0.5),q.y)-h.x;
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
#endif
}
float sdCapsule( vec3 p, vec3 a, vec3 b, float r )
{
vec3 pa = p-a, ba = b-a;
float h = clamp( dot(pa,ba)/dot(ba,ba), 0.0, 1.0 );
return length( pa - ba*h ) - r;
}
float sdEquilateralTriangle( in vec2 p )
{
const float k = sqrt(3.0);
p.x = abs(p.x) - 1.0;
p.y = p.y + 1.0/k;
if( p.x + k*p.y > 0.0 ) p = vec2( p.x - k*p.y, -k*p.x - p.y )/2.0;
p.x += 2.0 - 2.0*clamp( (p.x+2.0)/2.0, 0.0, 1.0 );
return -length(p)*sign(p.y);
}
float sdTriPrism( vec3 p, vec2 h )
{
vec3 q = abs(p);
float d1 = q.z-h.y;
#if 1
// distance bound
float d2 = max(q.x*0.866025+p.y*0.5,-p.y)-h.x*0.5;
#else
// correct distance
h.x *= 0.866025;
float d2 = sdEquilateralTriangle(p.xy/h.x)*h.x;
#endif
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
}
float sdCylinder( vec3 p, vec2 h )
{
vec2 d = abs(vec2(length(p.xz),p.y)) - h;
return min(max(d.x,d.y),0.0) + length(max(d,0.0));
}
float sdCone( in vec3 p, in vec3 c )
{
vec2 q = vec2( length(p.xz), p.y );
float d1 = -q.y-c.z;
float d2 = max( dot(q,c.xy), q.y);
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
}
float sdConeSection( in vec3 p, in float h, in float r1, in float r2 )
{
float d1 = -p.y - h;
float q = p.y - h;
float si = 0.5*(r1-r2)/h;
float d2 = max( sqrt( dot(p.xz,p.xz)*(1.0-si*si)) + q*si - r2, q );
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
}
float sdPryamid4(vec3 p, vec3 h ) // h = { cos a, sin a, height }
{
// Tetrahedron = Octahedron - Cube
float box = sdBox( p - vec3(0,-2.0*h.z,0), vec3(2.0*h.z) );
float d = 0.0;
d = max( d, abs( dot(p, vec3( -h.x, h.y, 0 )) ));
d = max( d, abs( dot(p, vec3( h.x, h.y, 0 )) ));
d = max( d, abs( dot(p, vec3( 0, h.y, h.x )) ));
d = max( d, abs( dot(p, vec3( 0, h.y,-h.x )) ));
float octa = d - h.z;
return max(-box,octa); // Subtraction
}
float length2( vec2 p )
{
return sqrt( p.x*p.x + p.y*p.y );
}
float length6( vec2 p )
{
p = p*p*p; p = p*p;
return pow( p.x + p.y, 1.0/6.0 );
}
float length8( vec2 p )
{
p = p*p; p = p*p; p = p*p;
return pow( p.x + p.y, 1.0/8.0 );
}
float sdTorus82( vec3 p, vec2 t )
{
vec2 q = vec2(length2(p.xz)-t.x,p.y);
return length8(q)-t.y;
}
float sdTorus88( vec3 p, vec2 t )
{
vec2 q = vec2(length8(p.xz)-t.x,p.y);
return length8(q)-t.y;
}
float sdCylinder6( vec3 p, vec2 h )
{
return max( length6(p.xz)-h.x, abs(p.y)-h.y );
}
//------------------------------------------------------------------
float opS( float d1, float d2 )
{
return max(-d2,d1);
}
vec2 opU( vec2 d1, vec2 d2 )
{
return (d1.x<d2.x) ? d1 : d2;
}
vec3 opRep( vec3 p, vec3 c )
{
return mod(p,c)-0.5*c;
}
vec3 opTwist( vec3 p )
{
float c = cos(10.0*p.y+10.0);
float s = sin(10.0*p.y+10.0);
mat2 m = mat2(c,-s,s,c);
return vec3(m*p.xz,p.y);
}
//------------------------------------------------------------------
vec2 map( in vec3 pos )
{
vec2 res = opU( vec2( sdPlane( pos), 1.0 ),
vec2( sdSphere( pos-vec3( 0.0,0.25, 0.0), 0.25 ), 46.9 ) );
res = opU( res, vec2( sdBox( pos-vec3( 1.0,0.25, 0.0), vec3(0.25) ), 3.0 ) );
res = opU( res, vec2( udRoundBox( pos-vec3( 1.0,0.25, 1.0), vec3(0.15), 0.1 ), 41.0 ) );
res = opU( res, vec2( sdTorus( pos-vec3( 0.0,0.25, 1.0), vec2(0.20,0.05) ), 25.0 ) );
res = opU( res, vec2( sdCapsule( pos,vec3(-1.3,0.10,-0.1), vec3(-0.8,0.50,0.2), 0.1 ), 31.9 ) );
res = opU( res, vec2( sdTriPrism( pos-vec3(-1.0,0.25,-1.0), vec2(0.25,0.05) ),43.5 ) );
res = opU( res, vec2( sdCylinder( pos-vec3( 1.0,0.30,-1.0), vec2(0.1,0.2) ), 8.0 ) );
res = opU( res, vec2( sdCone( pos-vec3( 0.0,0.50,-1.0), vec3(0.8,0.6,0.3) ), 55.0 ) );
res = opU( res, vec2( sdTorus82( pos-vec3( 0.0,0.25, 2.0), vec2(0.20,0.05) ),50.0 ) );
res = opU( res, vec2( sdTorus88( pos-vec3(-1.0,0.25, 2.0), vec2(0.20,0.05) ),43.0 ) );
res = opU( res, vec2( sdCylinder6( pos-vec3( 1.0,0.30, 2.0), vec2(0.1,0.2) ), 12.0 ) );
res = opU( res, vec2( sdHexPrism( pos-vec3(-1.0,0.20, 1.0), vec2(0.25,0.05) ),17.0 ) );
res = opU( res, vec2( sdPryamid4( pos-vec3(-1.0,0.15,-2.0), vec3(0.8,0.6,0.25) ),37.0 ) );
res = opU( res, vec2( opS( udRoundBox( pos-vec3(-2.0,0.2, 1.0), vec3(0.15),0.05),
sdSphere( pos-vec3(-2.0,0.2, 1.0), 0.25)), 13.0 ) );
res = opU( res, vec2( opS( sdTorus82( pos-vec3(-2.0,0.2, 0.0), vec2(0.20,0.1)),
sdCylinder( opRep( vec3(atan(pos.x+2.0,pos.z)/6.2831, pos.y, 0.02+0.5*length(pos-vec3(-2.0,0.2, 0.0))), vec3(0.05,1.0,0.05)), vec2(0.02,0.6))), 51.0 ) );
res = opU( res, vec2( 0.5*sdSphere( pos-vec3(-2.0,0.25,-1.0), 0.2 ) + 0.03*sin(50.0*pos.x)*sin(50.0*pos.y)*sin(50.0*pos.z), 65.0 ) );
res = opU( res, vec2( 0.5*sdTorus( opTwist(pos-vec3(-2.0,0.25, 2.0)),vec2(0.20,0.05)), 46.7 ) );
res = opU( res, vec2( sdConeSection( pos-vec3( 0.0,0.35,-2.0), 0.15, 0.2, 0.1 ), 13.67 ) );
res = opU( res, vec2( sdEllipsoid( pos-vec3( 1.0,0.35,-2.0), vec3(0.15, 0.2, 0.05) ), 43.17 ) );
return res;
}
vec2 castRay( in vec3 ro, in vec3 rd )
{
float tmin = 0.2;
float tmax = 30.0;
#if 1
// bounding volume
float tp1 = (0.0-ro.y)/rd.y; if( tp1>0.0 ) tmax = min( tmax, tp1 );
float tp2 = (1.6-ro.y)/rd.y; if( tp2>0.0 ) { if( ro.y>1.6 ) tmin = max( tmin, tp2 );
else tmax = min( tmax, tp2 ); }
#endif
float t = tmin;
float m = -1.0;
for( int i=0; i<64; i++ )
{
float precis = 0.0005*t;
vec2 res = map( ro+rd*t );
if( res.x<precis || t>tmax ) break;
t += res.x;
m = res.y;
}
if( t>tmax ) m=-1.0;
return vec2( t, m );
}
float calcSoftshadow( in vec3 ro, in vec3 rd, in float mint, in float tmax )
{
float res = 1.0;
float t = mint;
for( int i=0; i<16; i++ )
{
float h = map( ro + rd*t ).x;
res = min( res, 8.0*h/t );
t += clamp( h, 0.02, 0.10 );
if( h<0.001 || t>tmax ) break;
}
return clamp( res, 0.0, 1.0 );
}
vec3 calcNormal( in vec3 pos )
{
vec2 e = vec2(1.0,-1.0)*0.5773*0.0005;
return normalize( e.xyy*map( pos + e.xyy ).x +
e.yyx*map( pos + e.yyx ).x +
e.yxy*map( pos + e.yxy ).x +
e.xxx*map( pos + e.xxx ).x );
/*
vec3 eps = vec3( 0.0005, 0.0, 0.0 );
vec3 nor = vec3(
map(pos+eps.xyy).x - map(pos-eps.xyy).x,
map(pos+eps.yxy).x - map(pos-eps.yxy).x,
map(pos+eps.yyx).x - map(pos-eps.yyx).x );
return normalize(nor);
*/
}
float calcAO( in vec3 pos, in vec3 nor )
{
float occ = 0.0;
float sca = 1.0;
for( int i=0; i<5; i++ )
{
float hr = 0.01 + 0.12*float(i)/4.0;
vec3 aopos = nor * hr + pos;
float dd = map( aopos ).x;
occ += -(dd-hr)*sca;
sca *= 0.95;
}
return clamp( 1.0 - 3.0*occ, 0.0, 1.0 );
}
// http://iquilezles.org/www/articles/checkerfiltering/checkerfiltering.htm
float checkersGradBox( in vec2 p )
{
// filter kernel
vec2 w = fwidth(p) + 0.001;
// analytical integral (box filter)
vec2 i = 2.0*(abs(fract((p-0.5*w)*0.5)-0.5)-abs(fract((p+0.5*w)*0.5)-0.5))/w;
// xor pattern
return 0.5 - 0.5*i.x*i.y;
}
vec3 render( in vec3 ro, in vec3 rd )
{
vec3 col = vec3(0.7, 0.9, 1.0) +rd.y*0.8;
vec2 res = castRay(ro,rd);
float t = res.x;
float m = res.y;
if( m>-0.5 )
{
vec3 pos = ro + t*rd;
vec3 nor = calcNormal( pos );
vec3 ref = reflect( rd, nor );
// material
col = 0.45 + 0.35*sin( vec3(0.05,0.08,0.10)*(m-1.0) );
if( m<1.5 )
{
float f = checkersGradBox( 5.0*pos.xz );
col = 0.3 + f*vec3(0.1);
}
// lighting
float occ = calcAO( pos, nor );
vec3 lig = normalize( vec3(cos(-0.4 * runTime), sin(0.7 * runTime), -0.6) );
vec3 hal = normalize( lig-rd );
float amb = clamp( 0.5+0.5*nor.y, 0.0, 1.0 );
float dif = clamp( dot( nor, lig ), 0.0, 1.0 );
float bac = clamp( dot( nor, normalize(vec3(-lig.x,0.0,-lig.z))), 0.0, 1.0 )*clamp( 1.0-pos.y,0.0,1.0);
float dom = smoothstep( -0.1, 0.1, ref.y );
float fre = pow( clamp(1.0+dot(nor,rd),0.0,1.0), 2.0 );
dif *= calcSoftshadow( pos, lig, 0.02, 2.5 );
dom *= calcSoftshadow( pos, ref, 0.02, 2.5 );
float spe = pow( clamp( dot( nor, hal ), 0.0, 1.0 ),16.0)*
dif *
(0.04 + 0.96*pow( clamp(1.0+dot(hal,rd),0.0,1.0), 5.0 ));
vec3 lin = vec3(0.0);
lin += 1.30*dif*vec3(1.00,0.80,0.55);
lin += 0.40*amb*vec3(0.40,0.60,1.00)*occ;
lin += 0.50*dom*vec3(0.40,0.60,1.00)*occ;
lin += 0.50*bac*vec3(0.25,0.25,0.25)*occ;
lin += 0.25*fre*vec3(1.00,1.00,1.00)*occ;
col = col*lin;
col += 10.00*spe*vec3(1.00,0.90,0.70);
col = mix( col, vec3(0.8,0.9,1.0), 1.0-exp( -0.0002*t*t*t ) );
}
return vec3( clamp(col,0.0,1.0) );
}
mat3 setCamera( in vec3 ro, in vec3 ta, float cr )
{
vec3 cw = normalize(ta-ro);
vec3 cp = vec3(sin(cr), cos(cr),0.0);
vec3 cu = normalize( cross(cw,cp) );
vec3 cv = normalize( cross(cu,cw) );
return mat3( cu, cv, cw );
}
void main()
{
vec3 tot = vec3(0.0);
#if AA>1
for( int m=0; m<AA; m++ )
for( int n=0; n<AA; n++ )
{
// pixel coordinates
vec2 o = vec2(float(m),float(n)) / float(AA) - 0.5;
vec2 p = (-resolution.xy + 2.0*(gl_FragCoord.xy+o))/resolution.y;
#else
vec2 p = (-resolution.xy + 2.0*gl_FragCoord.xy)/resolution.y;
#endif
// RAY: Camera is provided from raylib
//vec3 ro = vec3( -0.5+3.5*cos(0.1*time + 6.0*mo.x), 1.0 + 2.0*mo.y, 0.5 + 4.0*sin(0.1*time + 6.0*mo.x) );
vec3 ro = viewEye;
vec3 ta = viewCenter;
// camera-to-world transformation
mat3 ca = setCamera( ro, ta, 0.0 );
// ray direction
vec3 rd = ca * normalize( vec3(p.xy,2.0) );
// render
vec3 col = render( ro, rd );
// gamma
col = pow( col, vec3(0.4545) );
tot += col;
#if AA>1
}
tot /= float(AA*AA);
#endif
finalColor = vec4( tot, 1.0 );
}

View File

@ -0,0 +1,40 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord; // Texture coordinates (sampler2D)
in vec4 fragColor; // Tint color
// Output fragment color
out vec4 finalColor; // Output fragment color
// Uniform inputs
uniform vec2 resolution; // Viewport resolution (in pixels)
uniform vec2 mouse; // Mouse pixel xy coordinates
uniform float time; // Total run time (in secods)
// Draw circle
vec4 DrawCircle(vec2 fragCoord, vec2 position, float radius, vec3 color)
{
float d = length(position - fragCoord) - radius;
float t = clamp(d, 0.0, 1.0);
return vec4(color, 1.0 - t);
}
void main()
{
vec2 fragCoord = gl_FragCoord.xy;
vec2 position = vec2(mouse.x, resolution.y - mouse.y);
float radius = 40.0;
// Draw background layer
vec4 colorA = vec4(0.2,0.2,0.8, 1.0);
vec4 colorB = vec4(1.0,0.7,0.2, 1.0);
vec4 layer1 = mix(colorA, colorB, abs(sin(time*0.1)));
// Draw circle layer
vec3 color = vec3(0.9, 0.16, 0.21);
vec4 layer2 = DrawCircle(fragCoord, position, radius, color);
// Blend the two layers
finalColor = mix(layer1, layer2, layer2.a);
}

View File

@ -0,0 +1,49 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
// NOTE: Render size values must be passed from code
const float renderWidth = 800;
const float renderHeight = 450;
float offset = 0.0;
uniform float time;
void main()
{
float frequency = renderHeight/3.0;
/*
// Scanlines method 1
float tval = 0; //time
vec2 uv = 0.5 + (fragTexCoord - 0.5)*(0.9 + 0.01*sin(0.5*tval));
vec4 color = texture(texture0, fragTexCoord);
color = clamp(color*0.5 + 0.5*color*color*1.2, 0.0, 1.0);
color *= 0.5 + 0.5*16.0*uv.x*uv.y*(1.0 - uv.x)*(1.0 - uv.y);
color *= vec4(0.8, 1.0, 0.7, 1);
color *= 0.9 + 0.1*sin(10.0*tval + uv.y*1000.0);
color *= 0.97 + 0.03*sin(110.0*tval);
fragColor = color;
*/
// Scanlines method 2
float globalPos = (fragTexCoord.y + offset) * frequency;
float wavePos = cos((fract(globalPos) - 0.5)*3.14);
// Texel color fetching from texture sampler
vec4 texelColor = texture(texture0, fragTexCoord);
finalColor = mix(vec4(0.0, 0.3, 0.0, 0.0), texelColor, wavePos);
}

View File

@ -0,0 +1,26 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
out vec4 finalColor;
// NOTE: Add here your custom variables
void main()
{
// Texel color fetching from texture sampler
// NOTE: Calculate alpha using signed distance field (SDF)
float distanceFromOutline = texture(texture0, fragTexCoord).a - 0.5;
float distanceChangePerFragment = length(vec2(dFdx(distanceFromOutline), dFdy(distanceFromOutline)));
float alpha = smoothstep(-distanceChangePerFragment, distanceChangePerFragment, distanceFromOutline);
// Calculate final fragment color
finalColor = vec4(fragColor.rgb, fragColor.a*alpha);
}

Some files were not shown because too many files have changed in this diff Show More